利用定向视觉感知的动态机器人编队

F. Michaud, D. Létourneau, Matthieu Guilbert, J. Valin
{"title":"利用定向视觉感知的动态机器人编队","authors":"F. Michaud, D. Létourneau, Matthieu Guilbert, J. Valin","doi":"10.1109/IRDS.2002.1041684","DOIUrl":null,"url":null,"abstract":"Recent research projects have demonstrated that it is possible to make robots move in formation. The approaches differ by the various assumptions about what can be perceived and communicated by the robots, the strategies used to make the robots move in formation, the ability to deal with obstacles and to switch formations. After suggesting criteria to characterize problems associated with robot formations, this paper presents a distributed approach based on directional visual perception and inter-robot communication. Using a pan camera head, sonar readings and wireless communication, we demonstrate that robots are not only able to move in formation, avoid obstacles and switch formations, but also initialize and determine by themselves their positions in the formation. Validation of our work is done in simulation and with Pioneer 2 robots.","PeriodicalId":74523,"journal":{"name":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"1 1","pages":"2740-2745 vol.3"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"Dynamic robot formations using directional visual perception\",\"authors\":\"F. Michaud, D. Létourneau, Matthieu Guilbert, J. Valin\",\"doi\":\"10.1109/IRDS.2002.1041684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research projects have demonstrated that it is possible to make robots move in formation. The approaches differ by the various assumptions about what can be perceived and communicated by the robots, the strategies used to make the robots move in formation, the ability to deal with obstacles and to switch formations. After suggesting criteria to characterize problems associated with robot formations, this paper presents a distributed approach based on directional visual perception and inter-robot communication. Using a pan camera head, sonar readings and wireless communication, we demonstrate that robots are not only able to move in formation, avoid obstacles and switch formations, but also initialize and determine by themselves their positions in the formation. Validation of our work is done in simulation and with Pioneer 2 robots.\",\"PeriodicalId\":74523,\"journal\":{\"name\":\"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"volume\":\"1 1\",\"pages\":\"2740-2745 vol.3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRDS.2002.1041684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRDS.2002.1041684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

最近的研究项目表明,使机器人按队形移动是可能的。这些方法的不同之处在于,它们对机器人可以感知和交流的东西、让机器人列队移动的策略、处理障碍和转换队形的能力有不同的假设。在提出机器人编队相关问题的表征标准之后,本文提出了一种基于定向视觉感知和机器人间通信的分布式方法。利用一个平移摄像机头,声纳读取和无线通信,我们证明了机器人不仅能够在编队中移动,避开障碍物和切换编队,而且还可以自己初始化和确定它们在编队中的位置。我们的工作在模拟和先锋2机器人上进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic robot formations using directional visual perception
Recent research projects have demonstrated that it is possible to make robots move in formation. The approaches differ by the various assumptions about what can be perceived and communicated by the robots, the strategies used to make the robots move in formation, the ability to deal with obstacles and to switch formations. After suggesting criteria to characterize problems associated with robot formations, this paper presents a distributed approach based on directional visual perception and inter-robot communication. Using a pan camera head, sonar readings and wireless communication, we demonstrate that robots are not only able to move in formation, avoid obstacles and switch formations, but also initialize and determine by themselves their positions in the formation. Validation of our work is done in simulation and with Pioneer 2 robots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FBG-based Shape-Sensing to Enable Lateral Deflection Methods of Autonomous Needle Insertion. An Energetic Approach to Task-Invariant Ankle Exoskeleton Control. Controlling Powered Prosthesis Kinematics over Continuous Transitions Between Walk and Stair Ascent. Effects of Personalization on Gait-State Tracking Performance Using Extended Kalman Filters. Improving Amputee Endurance over Activities of Daily Living with a Robotic Knee-Ankle Prosthesis: A Case Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1