预测有效抗病毒药物的推荐系统方法

Rafael Adorno, Diego Galeano, D. Stalder, L. Cernuzzi, Alberto Paccanaro
{"title":"预测有效抗病毒药物的推荐系统方法","authors":"Rafael Adorno, Diego Galeano, D. Stalder, L. Cernuzzi, Alberto Paccanaro","doi":"10.1109/CLEI53233.2021.9640217","DOIUrl":null,"url":null,"abstract":"Emerging infectious diseases such as COVID-19, caused by the SARS-CoV-2 virus, require systematic strategies to assist in the discovery of effective treatments. Drug repositioning, the process of finding new therapeutic indications for commercialized drugs, is a promising alternative to the development of new drugs, with lower costs and shorter development times. In this paper, we propose a recommendation system called geometric confidence non-negative matrix factorization (GcNMF) to assist in the repositioning of 126 broad spectrum antiviral drugs for 80 viruses, including SARS-CoV-2. GcNMF models the non-Euclidean structure of the space using graphs, and produces a ranked list of drugs for each virus. Our experiments reveal that GcNMF significanlty outperforms other matrix decomposition methods at predicting missing drug-virus associations. Our analysis suggests that GcNMF could assist pharmacological experts in the search for effective drugs against viral diseases.","PeriodicalId":6803,"journal":{"name":"2021 XLVII Latin American Computing Conference (CLEI)","volume":"101 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Recommender System Approach for Predicting Effective Antivirals\",\"authors\":\"Rafael Adorno, Diego Galeano, D. Stalder, L. Cernuzzi, Alberto Paccanaro\",\"doi\":\"10.1109/CLEI53233.2021.9640217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emerging infectious diseases such as COVID-19, caused by the SARS-CoV-2 virus, require systematic strategies to assist in the discovery of effective treatments. Drug repositioning, the process of finding new therapeutic indications for commercialized drugs, is a promising alternative to the development of new drugs, with lower costs and shorter development times. In this paper, we propose a recommendation system called geometric confidence non-negative matrix factorization (GcNMF) to assist in the repositioning of 126 broad spectrum antiviral drugs for 80 viruses, including SARS-CoV-2. GcNMF models the non-Euclidean structure of the space using graphs, and produces a ranked list of drugs for each virus. Our experiments reveal that GcNMF significanlty outperforms other matrix decomposition methods at predicting missing drug-virus associations. Our analysis suggests that GcNMF could assist pharmacological experts in the search for effective drugs against viral diseases.\",\"PeriodicalId\":6803,\"journal\":{\"name\":\"2021 XLVII Latin American Computing Conference (CLEI)\",\"volume\":\"101 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 XLVII Latin American Computing Conference (CLEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLEI53233.2021.9640217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 XLVII Latin American Computing Conference (CLEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEI53233.2021.9640217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

新出现的传染病,如由SARS-CoV-2病毒引起的COVID-19,需要有系统的战略来协助发现有效的治疗方法。药物重新定位是为商业化药物寻找新的治疗适应症的过程,是开发新药的一种很有前途的替代方法,成本更低,开发时间更短。本文提出了一种称为几何置信度非负矩阵分解(GcNMF)的推荐系统,用于辅助针对包括SARS-CoV-2在内的80种病毒的126种广谱抗病毒药物的重新定位。GcNMF使用图形对空间的非欧几里得结构进行建模,并为每种病毒生成药物的排名列表。我们的实验表明,GcNMF在预测缺失的药物-病毒关联方面明显优于其他矩阵分解方法。我们的分析表明,GcNMF可以帮助药理学专家寻找对抗病毒性疾病的有效药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Recommender System Approach for Predicting Effective Antivirals
Emerging infectious diseases such as COVID-19, caused by the SARS-CoV-2 virus, require systematic strategies to assist in the discovery of effective treatments. Drug repositioning, the process of finding new therapeutic indications for commercialized drugs, is a promising alternative to the development of new drugs, with lower costs and shorter development times. In this paper, we propose a recommendation system called geometric confidence non-negative matrix factorization (GcNMF) to assist in the repositioning of 126 broad spectrum antiviral drugs for 80 viruses, including SARS-CoV-2. GcNMF models the non-Euclidean structure of the space using graphs, and produces a ranked list of drugs for each virus. Our experiments reveal that GcNMF significanlty outperforms other matrix decomposition methods at predicting missing drug-virus associations. Our analysis suggests that GcNMF could assist pharmacological experts in the search for effective drugs against viral diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structured Text Generation for Spanish Freestyle Battles using Neural Networks Learning factory for the Software Engineering area: First didactic transformation An Early Alert System for Software Vulnerabilities based on Vulnerability Repositories and Social Networks Data Quality Management oriented to the Electronic Medical Record Program Committees
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1