基于PCB-MEMS的芯片实验室微流控脉冲系统

C. Aracil, F. Perdigones, A. Luque, J. Quero
{"title":"基于PCB-MEMS的芯片实验室微流控脉冲系统","authors":"C. Aracil, F. Perdigones, A. Luque, J. Quero","doi":"10.1109/CDE.2013.6481360","DOIUrl":null,"url":null,"abstract":"A low-cost microfluidic impulsion system has been manufactured by a combination of SU-8 processing and PCB-MEMS technology. It is a driven pressure impulsion system, activated by an one-shot microvalve. The connection of pressurized chambers is achieved by means of the destruction of the microvalve, and the impulsion is performed. The connections to external pumps are then avoided. The proposed design also allows the integration between electronic and microfluidic elements. Benefits of a well-known processing technique, low-cost and its wide applications can be highlighted. The fabrication and evaluation of the system has been carried out with successful results. The device is intended to be integrated in Lab on a Chip (LOC) platform in order to achieve an autonomous device.","PeriodicalId":6614,"journal":{"name":"2013 Spanish Conference on Electron Devices","volume":"512 1","pages":"131-134"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Microfluidic impulsion system manufactured by PCB-MEMS for Lab on a Chip\",\"authors\":\"C. Aracil, F. Perdigones, A. Luque, J. Quero\",\"doi\":\"10.1109/CDE.2013.6481360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A low-cost microfluidic impulsion system has been manufactured by a combination of SU-8 processing and PCB-MEMS technology. It is a driven pressure impulsion system, activated by an one-shot microvalve. The connection of pressurized chambers is achieved by means of the destruction of the microvalve, and the impulsion is performed. The connections to external pumps are then avoided. The proposed design also allows the integration between electronic and microfluidic elements. Benefits of a well-known processing technique, low-cost and its wide applications can be highlighted. The fabrication and evaluation of the system has been carried out with successful results. The device is intended to be integrated in Lab on a Chip (LOC) platform in order to achieve an autonomous device.\",\"PeriodicalId\":6614,\"journal\":{\"name\":\"2013 Spanish Conference on Electron Devices\",\"volume\":\"512 1\",\"pages\":\"131-134\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Spanish Conference on Electron Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDE.2013.6481360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Spanish Conference on Electron Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDE.2013.6481360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

将SU-8加工技术与PCB-MEMS技术相结合,研制了一种低成本的微流控脉冲系统。它是一个驱动压力脉冲系统,由一个一次性微阀激活。通过破坏微阀来实现增压室的连接,并进行脉冲。这样就避免了与外部泵的连接。提出的设计还允许电子和微流控元件之间的集成。这是一种众所周知的加工技术,成本低,应用广泛。对该系统进行了制作和评估,并取得了成功的结果。该设备旨在集成在芯片实验室(LOC)平台上,以实现自主设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microfluidic impulsion system manufactured by PCB-MEMS for Lab on a Chip
A low-cost microfluidic impulsion system has been manufactured by a combination of SU-8 processing and PCB-MEMS technology. It is a driven pressure impulsion system, activated by an one-shot microvalve. The connection of pressurized chambers is achieved by means of the destruction of the microvalve, and the impulsion is performed. The connections to external pumps are then avoided. The proposed design also allows the integration between electronic and microfluidic elements. Benefits of a well-known processing technique, low-cost and its wide applications can be highlighted. The fabrication and evaluation of the system has been carried out with successful results. The device is intended to be integrated in Lab on a Chip (LOC) platform in order to achieve an autonomous device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CMOS VCO design optimization using reliable 3D electromagnetic inductor models Gadolinium scandate by high pressure sputtering as a high-k dielectric Macroporous silicon microreactor for the preferential oxidation of CO Trends in crystalline silicon growth for low cost and efficient photovoltaic cells Nanohole particle filling by electrospray
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1