{"title":"纳米晶Cu-Ti合金的自旋分解稳定塑性流动","authors":"J. Rosalie, O. Renk, R. Pippan","doi":"10.2139/ssrn.3793931","DOIUrl":null,"url":null,"abstract":"A combination of high strength and reasonable ductility has been achieved in a copper-1.7 at.%titanium alloy deformed by high-pressure torsion. Grain refinement and a spinodal microstructure provided a hardness of 254 ± 2 H<i>v</i>, yield strength of 800 MPa and elongation of 10%. The spinodal structure persisted during isothermal ageing, further increasing the yield strength to 890MPa while retaining an elongation of 7%. This work demonstrates the potential for spinodal microstructures to overcome the difficulties in retaining ductility in ultra-fine grained or nanocrystalline alloys, especially upon post- deformation heating where strain softening normally results in brittle behavior.","PeriodicalId":7755,"journal":{"name":"AMI: Acta Materialia","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spinodal Decomposition Stabilizes Plastic Flow in a Nanocrystalline Cu-Ti Alloy\",\"authors\":\"J. Rosalie, O. Renk, R. Pippan\",\"doi\":\"10.2139/ssrn.3793931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A combination of high strength and reasonable ductility has been achieved in a copper-1.7 at.%titanium alloy deformed by high-pressure torsion. Grain refinement and a spinodal microstructure provided a hardness of 254 ± 2 H<i>v</i>, yield strength of 800 MPa and elongation of 10%. The spinodal structure persisted during isothermal ageing, further increasing the yield strength to 890MPa while retaining an elongation of 7%. This work demonstrates the potential for spinodal microstructures to overcome the difficulties in retaining ductility in ultra-fine grained or nanocrystalline alloys, especially upon post- deformation heating where strain softening normally results in brittle behavior.\",\"PeriodicalId\":7755,\"journal\":{\"name\":\"AMI: Acta Materialia\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMI: Acta Materialia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3793931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMI: Acta Materialia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3793931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spinodal Decomposition Stabilizes Plastic Flow in a Nanocrystalline Cu-Ti Alloy
A combination of high strength and reasonable ductility has been achieved in a copper-1.7 at.%titanium alloy deformed by high-pressure torsion. Grain refinement and a spinodal microstructure provided a hardness of 254 ± 2 Hv, yield strength of 800 MPa and elongation of 10%. The spinodal structure persisted during isothermal ageing, further increasing the yield strength to 890MPa while retaining an elongation of 7%. This work demonstrates the potential for spinodal microstructures to overcome the difficulties in retaining ductility in ultra-fine grained or nanocrystalline alloys, especially upon post- deformation heating where strain softening normally results in brittle behavior.