基于地基-基础-结构相互作用的不同基础水平建筑基准面评价

V. Kalatjari, A. Naghizadeh, R. Naderi, M. Talebpour
{"title":"基于地基-基础-结构相互作用的不同基础水平建筑基准面评价","authors":"V. Kalatjari, A. Naghizadeh, R. Naderi, M. Talebpour","doi":"10.5829/ije.2017.30.09c.01","DOIUrl":null,"url":null,"abstract":"The base level is among the effective parameters in determining the seismic force on a structure, if the equivalent-static method is used for analyzing a structure. It is obvious that the base level is located on foundation in buildings in which foundation is built in a single level and there is not any interaction between the structure's walls and the soil; however, in some buildings which have underground part, the foundation is built in two different levels which in turn makes the determination of the location of base level uncertain. Since no relevant recommendation has been provided in the seismic codes, this study tries to remove such uncertainties. For this purpose, the structural models along with foundation and their peripheral soil were modeled by the ABAQUS software and regarding the soil type it was tested by an artificial accelerogram compatible with the spectrum of the code. Two types of soil (stiff and soft) were used in this study. The results indicated that the base level location is considerably influenced by the soil type, the number of entrance columns leading to the underground and the number of stories of the structure.","PeriodicalId":14066,"journal":{"name":"International Journal of Engineering - Transactions C: Aspects","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Base Level Evaluation in Buildings with Different Foundation Levels by Soil-foundation-structure Interaction\",\"authors\":\"V. Kalatjari, A. Naghizadeh, R. Naderi, M. Talebpour\",\"doi\":\"10.5829/ije.2017.30.09c.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The base level is among the effective parameters in determining the seismic force on a structure, if the equivalent-static method is used for analyzing a structure. It is obvious that the base level is located on foundation in buildings in which foundation is built in a single level and there is not any interaction between the structure's walls and the soil; however, in some buildings which have underground part, the foundation is built in two different levels which in turn makes the determination of the location of base level uncertain. Since no relevant recommendation has been provided in the seismic codes, this study tries to remove such uncertainties. For this purpose, the structural models along with foundation and their peripheral soil were modeled by the ABAQUS software and regarding the soil type it was tested by an artificial accelerogram compatible with the spectrum of the code. Two types of soil (stiff and soft) were used in this study. The results indicated that the base level location is considerably influenced by the soil type, the number of entrance columns leading to the underground and the number of stories of the structure.\",\"PeriodicalId\":14066,\"journal\":{\"name\":\"International Journal of Engineering - Transactions C: Aspects\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering - Transactions C: Aspects\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5829/ije.2017.30.09c.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering - Transactions C: Aspects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5829/ije.2017.30.09c.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

摘要

如果采用等效静力法对结构进行分析,基准面是确定结构地震力的有效参数之一。在基础为单层结构且墙体与土体之间不存在任何相互作用的建筑物中,基底层明显位于基础之上;然而,在一些有地下部分的建筑物中,基础分为两层,这使得基础层的位置无法确定。由于抗震规范中没有提供相关建议,本研究试图消除这种不确定性。为此,采用ABAQUS软件对结构模型、基础及其周边土体进行建模,并采用与规范谱相兼容的人工加速度仪对土体类型进行测试。本研究使用了两种类型的土壤(硬土和软土)。结果表明:地基水平位置受土体类型、地下入口柱数和结构层数的影响较大;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Base Level Evaluation in Buildings with Different Foundation Levels by Soil-foundation-structure Interaction
The base level is among the effective parameters in determining the seismic force on a structure, if the equivalent-static method is used for analyzing a structure. It is obvious that the base level is located on foundation in buildings in which foundation is built in a single level and there is not any interaction between the structure's walls and the soil; however, in some buildings which have underground part, the foundation is built in two different levels which in turn makes the determination of the location of base level uncertain. Since no relevant recommendation has been provided in the seismic codes, this study tries to remove such uncertainties. For this purpose, the structural models along with foundation and their peripheral soil were modeled by the ABAQUS software and regarding the soil type it was tested by an artificial accelerogram compatible with the spectrum of the code. Two types of soil (stiff and soft) were used in this study. The results indicated that the base level location is considerably influenced by the soil type, the number of entrance columns leading to the underground and the number of stories of the structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
29
期刊最新文献
Algorithm of Predicting Heart Attack with using Sparse Coder Predicting Service Life of Polyethylene Pipes under Crack Expansion using "Random Forest" Method Experimental Study to Evaluate Antisymmetric Reinforced Concrete Deep Beams with Openings under Concentrated Loading Using Strut and Tie Model Study on Application of Arps Decline Curves for Gas Production Forecasting in Senegal Design and Performance Analysis of 6H-SiC Metal-Semiconductor Field-Effect Transistor with Undoped and Recessed Area under Gate in 10nm Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1