基于最大SEE抗扰度汽车级元件的低功率DCDC变换器

Franz Stoegerer, T. Panhofer
{"title":"基于最大SEE抗扰度汽车级元件的低功率DCDC变换器","authors":"Franz Stoegerer, T. Panhofer","doi":"10.1109/ESPC.2019.8932033","DOIUrl":null,"url":null,"abstract":"The new-space market expects significantly reduced price of space borne equipment while still maintaining high performance and reliability. One significant factor is to reduce recurring parts costs by using components in lower quality such as automotive-grade. Since those parts are not designed for the space environment, radiation effects have to be considered even more than when using space-grade components. For short in-orbit durations or in LEO orbits the total ionizing dose (TID) value might be quite low and uncritical. However, single event effects (SEE) are severe even for such applications. This paper presents the design of a low-power DCDC converter (5 V, 2.5 A output) based on automotive parts and optimized for maximum SEE immunity.","PeriodicalId":6734,"journal":{"name":"2019 European Space Power Conference (ESPC)","volume":"223 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Low Power DCDC Converter Based on Automotive-Grade Components Featuring Maximum SEE Immunity\",\"authors\":\"Franz Stoegerer, T. Panhofer\",\"doi\":\"10.1109/ESPC.2019.8932033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The new-space market expects significantly reduced price of space borne equipment while still maintaining high performance and reliability. One significant factor is to reduce recurring parts costs by using components in lower quality such as automotive-grade. Since those parts are not designed for the space environment, radiation effects have to be considered even more than when using space-grade components. For short in-orbit durations or in LEO orbits the total ionizing dose (TID) value might be quite low and uncritical. However, single event effects (SEE) are severe even for such applications. This paper presents the design of a low-power DCDC converter (5 V, 2.5 A output) based on automotive parts and optimized for maximum SEE immunity.\",\"PeriodicalId\":6734,\"journal\":{\"name\":\"2019 European Space Power Conference (ESPC)\",\"volume\":\"223 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 European Space Power Conference (ESPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESPC.2019.8932033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 European Space Power Conference (ESPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESPC.2019.8932033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

新空间市场期望空间设备的价格大幅降低,同时仍保持高性能和可靠性。一个重要的因素是通过使用低质量的部件(如汽车级)来降低重复部件的成本。由于这些部件不是为空间环境设计的,因此必须比使用空间级部件时更多地考虑辐射影响。对于在轨时间较短或在低轨道轨道上,总电离剂量(TID)值可能相当低且不重要。然而,单事件效应(SEE)即使在这样的应用中也是严重的。本文设计了一种基于汽车零部件的低功率DCDC转换器(5v, 2.5 a输出),并对其进行了优化,以获得最大的SEE抗扰度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low Power DCDC Converter Based on Automotive-Grade Components Featuring Maximum SEE Immunity
The new-space market expects significantly reduced price of space borne equipment while still maintaining high performance and reliability. One significant factor is to reduce recurring parts costs by using components in lower quality such as automotive-grade. Since those parts are not designed for the space environment, radiation effects have to be considered even more than when using space-grade components. For short in-orbit durations or in LEO orbits the total ionizing dose (TID) value might be quite low and uncritical. However, single event effects (SEE) are severe even for such applications. This paper presents the design of a low-power DCDC converter (5 V, 2.5 A output) based on automotive parts and optimized for maximum SEE immunity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Four-Junction Wafer Bonded Solar Cells for Space Applications Back Reflector with Diffractive Gratings for Light-Trapping in Thin-Film III-V Solar Cells Degradation of Lithium-Ion Batteries in Aerospace Design and Optimization of Radiation-Hardened Isolated Converters for Jovian Environments Narrow Bandgap Dilute Nitride Materials for 6-junction Space Solar Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1