人-技术交互过程中的情感检测:一项结合EEG和fNIRS方法的实证研究

K. Pollmann, Mathias Vukelić, M. Peissner
{"title":"人-技术交互过程中的情感检测:一项结合EEG和fNIRS方法的实证研究","authors":"K. Pollmann, Mathias Vukelić, M. Peissner","doi":"10.1109/ACII.2015.7344649","DOIUrl":null,"url":null,"abstract":"The present Ph. D. project explores possibilities to apply neurophysiological methods for affect detection during human-technology interaction (HTI). Portable neurophysio-logical methods such as electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) offer an objective, ecologically valid and rather convenient way to infer the user's affective state through the monitoring of brain activity. To identify neural signatures for positive and negative affective user reactions an empirical study is proposed. The experimental design of this study enables synchronous data acquisition for EEG, fNIRS and psychophysiological measurements while the user is interacting with an adaptive web-interface. During the interaction process positive and negative affective states are induced by system-generated adaptive actions which are either appropriate and helpful or inappropriate and impedimental. The findings of the empirical study shed light into the question whether EEG, fNIRS or a hybrid approach that combines the employed methods is most reliable for affect detection during HTI.","PeriodicalId":6863,"journal":{"name":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","volume":"1 1","pages":"726-732"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Towards affect detection during human-technology interaction: An empirical study using a combined EEG and fNIRS approach\",\"authors\":\"K. Pollmann, Mathias Vukelić, M. Peissner\",\"doi\":\"10.1109/ACII.2015.7344649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present Ph. D. project explores possibilities to apply neurophysiological methods for affect detection during human-technology interaction (HTI). Portable neurophysio-logical methods such as electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) offer an objective, ecologically valid and rather convenient way to infer the user's affective state through the monitoring of brain activity. To identify neural signatures for positive and negative affective user reactions an empirical study is proposed. The experimental design of this study enables synchronous data acquisition for EEG, fNIRS and psychophysiological measurements while the user is interacting with an adaptive web-interface. During the interaction process positive and negative affective states are induced by system-generated adaptive actions which are either appropriate and helpful or inappropriate and impedimental. The findings of the empirical study shed light into the question whether EEG, fNIRS or a hybrid approach that combines the employed methods is most reliable for affect detection during HTI.\",\"PeriodicalId\":6863,\"journal\":{\"name\":\"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)\",\"volume\":\"1 1\",\"pages\":\"726-732\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACII.2015.7344649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACII.2015.7344649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

目前的博士项目探索在人机交互(HTI)过程中应用神经生理学方法进行情感检测的可能性。便携式神经生理学方法,如脑电图(EEG)和功能近红外光谱(fNIRS)提供了一种客观、生态有效和相当方便的方法,通过监测大脑活动来推断用户的情感状态。为了识别积极和消极情感用户反应的神经特征,提出了一项实证研究。本研究的实验设计能够在用户与自适应网络界面交互时同步采集EEG、fNIRS和心理生理测量数据。在互动过程中,积极和消极的情感状态是由系统产生的适应性行为引起的,这些适应性行为可能是适当的、有益的,也可能是不适当的、有害的。实证研究的结果揭示了一个问题,即EEG、fNIRS或结合所采用方法的混合方法在HTI期间的情感检测中是最可靠的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards affect detection during human-technology interaction: An empirical study using a combined EEG and fNIRS approach
The present Ph. D. project explores possibilities to apply neurophysiological methods for affect detection during human-technology interaction (HTI). Portable neurophysio-logical methods such as electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) offer an objective, ecologically valid and rather convenient way to infer the user's affective state through the monitoring of brain activity. To identify neural signatures for positive and negative affective user reactions an empirical study is proposed. The experimental design of this study enables synchronous data acquisition for EEG, fNIRS and psychophysiological measurements while the user is interacting with an adaptive web-interface. During the interaction process positive and negative affective states are induced by system-generated adaptive actions which are either appropriate and helpful or inappropriate and impedimental. The findings of the empirical study shed light into the question whether EEG, fNIRS or a hybrid approach that combines the employed methods is most reliable for affect detection during HTI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Avatar and participant gender differences in the perception of uncanniness of virtual humans Neural conditional ordinal random fields for agreement level estimation Fundamental frequency modeling using wavelets for emotional voice conversion Bimodal feature-based fusion for real-time emotion recognition in a mobile context Harmony search for feature selection in speech emotion recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1