D. Rwegasira, I. Dhaou, M. Ebrahimi, Anders Hallén, N. Mvungi, H. Tenhunen
{"title":"基于多智能体系统的孤岛直流微电网能源交易与控制","authors":"D. Rwegasira, I. Dhaou, M. Ebrahimi, Anders Hallén, N. Mvungi, H. Tenhunen","doi":"10.3233/mgs-210345","DOIUrl":null,"url":null,"abstract":"The energy sector is experiencing a revolution that is fuelled by a multitude of factors. Among them are the aging grid system, the need for cleaner energy and the increasing demands on energy sector. The demand-response program is an advanced feature in smart grid that strives to match suppliers to their demands using price-based and incentive programs. The objective of the work is to analyse the performance of the load shedding technique using dynamic pricing algorithm. The system was designed using multi-agent system (MAS) for a DC microgrid capable of real-time monitoring and controlling of power using price-based demand-response program. As a proof of concept, the system was implemented using intelligent physical agents, Java Agent Development Framework (JADE), and agent simulation platform (REPAST) with two residential houses (non-critical loads) and one hospital (critical load). The architecture has been implemented using embedded devices, relays, and sensors to control the operations of load shedding and energy trading in residential areas that have no access to electricity. The measured results show that the system can shed the load with the latency of less than 600 ms, and energy cost saving with an individual houses by 80% of the total cost with 2USD per day. The outcome of the studies demonstrates the effectiveness of the proposed multi-agent approach for real-time operation of a microgrid and the implementation of demand-response program.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Energy trading and control of islanded DC microgrid using multi-agent systems\",\"authors\":\"D. Rwegasira, I. Dhaou, M. Ebrahimi, Anders Hallén, N. Mvungi, H. Tenhunen\",\"doi\":\"10.3233/mgs-210345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The energy sector is experiencing a revolution that is fuelled by a multitude of factors. Among them are the aging grid system, the need for cleaner energy and the increasing demands on energy sector. The demand-response program is an advanced feature in smart grid that strives to match suppliers to their demands using price-based and incentive programs. The objective of the work is to analyse the performance of the load shedding technique using dynamic pricing algorithm. The system was designed using multi-agent system (MAS) for a DC microgrid capable of real-time monitoring and controlling of power using price-based demand-response program. As a proof of concept, the system was implemented using intelligent physical agents, Java Agent Development Framework (JADE), and agent simulation platform (REPAST) with two residential houses (non-critical loads) and one hospital (critical load). The architecture has been implemented using embedded devices, relays, and sensors to control the operations of load shedding and energy trading in residential areas that have no access to electricity. The measured results show that the system can shed the load with the latency of less than 600 ms, and energy cost saving with an individual houses by 80% of the total cost with 2USD per day. The outcome of the studies demonstrates the effectiveness of the proposed multi-agent approach for real-time operation of a microgrid and the implementation of demand-response program.\",\"PeriodicalId\":43659,\"journal\":{\"name\":\"Multiagent and Grid Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiagent and Grid Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/mgs-210345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiagent and Grid Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mgs-210345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Energy trading and control of islanded DC microgrid using multi-agent systems
The energy sector is experiencing a revolution that is fuelled by a multitude of factors. Among them are the aging grid system, the need for cleaner energy and the increasing demands on energy sector. The demand-response program is an advanced feature in smart grid that strives to match suppliers to their demands using price-based and incentive programs. The objective of the work is to analyse the performance of the load shedding technique using dynamic pricing algorithm. The system was designed using multi-agent system (MAS) for a DC microgrid capable of real-time monitoring and controlling of power using price-based demand-response program. As a proof of concept, the system was implemented using intelligent physical agents, Java Agent Development Framework (JADE), and agent simulation platform (REPAST) with two residential houses (non-critical loads) and one hospital (critical load). The architecture has been implemented using embedded devices, relays, and sensors to control the operations of load shedding and energy trading in residential areas that have no access to electricity. The measured results show that the system can shed the load with the latency of less than 600 ms, and energy cost saving with an individual houses by 80% of the total cost with 2USD per day. The outcome of the studies demonstrates the effectiveness of the proposed multi-agent approach for real-time operation of a microgrid and the implementation of demand-response program.