下载PDF
{"title":"用于7 T动物磁共振成像的多通道MOSFET射频传输系统的实用设计","authors":"Yizhe Zhang, Yan Liu, Bingyao Sun, Xiaoliang Zhang, Xiaohua Jiang","doi":"10.1002/cmr.b.21313","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this work, we developed and tested a multi-channel radio frequency (RF) transmission system with compact metal-oxide semiconductor field effect transistor (MOSFET) amplifiers for parallel excitation in 7 T animal MRI scanner. The system is composed of a multi-channel RF controller and four independent RF power amplifiers. Each power amplifier contains two amplification stages. The design was validated by simulation and bench test. The power gain for the amplifier is 18.7 dB at 300 MHz, demonstrating the sufficient amplification capability of the transmission system for small animal parallel excitation applications at 7 T. This compact RF power amplifier can be potentially used for on-coil amplification in multichannel RF array system. © 2015 Wiley Periodicals, Inc. Concepts Magn Reson Part B (Magn Reson Engineering) 45B: 191–200, 2015</p>\n </div>","PeriodicalId":50623,"journal":{"name":"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering","volume":"45 4","pages":"191-200"},"PeriodicalIF":0.9000,"publicationDate":"2015-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmr.b.21313","citationCount":"2","resultStr":"{\"title\":\"Practical design of multi-channel MOSFET RF transmission system for 7 T animal MR imaging\",\"authors\":\"Yizhe Zhang, Yan Liu, Bingyao Sun, Xiaoliang Zhang, Xiaohua Jiang\",\"doi\":\"10.1002/cmr.b.21313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this work, we developed and tested a multi-channel radio frequency (RF) transmission system with compact metal-oxide semiconductor field effect transistor (MOSFET) amplifiers for parallel excitation in 7 T animal MRI scanner. The system is composed of a multi-channel RF controller and four independent RF power amplifiers. Each power amplifier contains two amplification stages. The design was validated by simulation and bench test. The power gain for the amplifier is 18.7 dB at 300 MHz, demonstrating the sufficient amplification capability of the transmission system for small animal parallel excitation applications at 7 T. This compact RF power amplifier can be potentially used for on-coil amplification in multichannel RF array system. © 2015 Wiley Periodicals, Inc. Concepts Magn Reson Part B (Magn Reson Engineering) 45B: 191–200, 2015</p>\\n </div>\",\"PeriodicalId\":50623,\"journal\":{\"name\":\"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering\",\"volume\":\"45 4\",\"pages\":\"191-200\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2015-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cmr.b.21313\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cmr.b.21313\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmr.b.21313","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2
引用
批量引用