石墨烯基金纳米复合材料作为SERS衬底的有效调谐及应用

Xiu Liang, P. Yin
{"title":"石墨烯基金纳米复合材料作为SERS衬底的有效调谐及应用","authors":"Xiu Liang, P. Yin","doi":"10.1109/NANO.2016.7751369","DOIUrl":null,"url":null,"abstract":"Graphene-based noble metal nanocomposites have attracted tremendous research interest in the fields of surface-enhanced Raman scattering (SERS) recently. However, efficient utilization as SERS substrates has been impeded by the difficulty of tuning SERS enhancement effects induced from chemical and plasmonic enhancement by different preparation methods of graphene. Herein, three kinds of graphene-based Au hybrid, CVD-G/Au, GO/Au and rGO/Au, which were synthesized by physical sputtering and chemical in-situ crystallization growth methods, were fabricated to evaluate as SERS substrates. Simple methods were developed to enhance the Raman signals effectively by tuning both plasmonic and chemical enhancement, respectively. Besides, the prepared rGO/Au nanocomposites were used as SERS substrates to monitor the process of plasmon-driven surface-catalyzed reaction from 4-nitrobenzenethiol (4-NBT) to p,p'-dimercaptoazobenzene (DMAB). According to systematic comparisons during power- and time-dependent SERS experiments, rGO/Au was demonstrated to be with lower power threshold and higher catalytic efficiency than Au nanoparticles (NPs) toward the reaction, which provide clues to understand the interaction between metal and graphene as well as further study of plasmon-driven chemical reactions for further.","PeriodicalId":6646,"journal":{"name":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","volume":"89 1","pages":"612-615"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective tuning and application of graphene-based Au nanocomposites as SERS substrates\",\"authors\":\"Xiu Liang, P. Yin\",\"doi\":\"10.1109/NANO.2016.7751369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphene-based noble metal nanocomposites have attracted tremendous research interest in the fields of surface-enhanced Raman scattering (SERS) recently. However, efficient utilization as SERS substrates has been impeded by the difficulty of tuning SERS enhancement effects induced from chemical and plasmonic enhancement by different preparation methods of graphene. Herein, three kinds of graphene-based Au hybrid, CVD-G/Au, GO/Au and rGO/Au, which were synthesized by physical sputtering and chemical in-situ crystallization growth methods, were fabricated to evaluate as SERS substrates. Simple methods were developed to enhance the Raman signals effectively by tuning both plasmonic and chemical enhancement, respectively. Besides, the prepared rGO/Au nanocomposites were used as SERS substrates to monitor the process of plasmon-driven surface-catalyzed reaction from 4-nitrobenzenethiol (4-NBT) to p,p'-dimercaptoazobenzene (DMAB). According to systematic comparisons during power- and time-dependent SERS experiments, rGO/Au was demonstrated to be with lower power threshold and higher catalytic efficiency than Au nanoparticles (NPs) toward the reaction, which provide clues to understand the interaction between metal and graphene as well as further study of plasmon-driven chemical reactions for further.\",\"PeriodicalId\":6646,\"journal\":{\"name\":\"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)\",\"volume\":\"89 1\",\"pages\":\"612-615\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2016.7751369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2016.7751369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,石墨烯基贵金属纳米复合材料在表面增强拉曼散射(SERS)领域引起了广泛的研究兴趣。然而,由于石墨烯制备方法的不同,化学增强和等离子体增强引起的SERS增强效果难以调节,阻碍了其作为SERS衬底的有效利用。本文通过物理溅射和化学原位结晶生长方法制备了CVD-G/Au、GO/Au和rGO/Au三种石墨烯基Au杂化材料,并对其作为SERS衬底进行了评价。开发了一种简单的方法,分别通过调谐等离子体和化学增强来有效地增强拉曼信号。此外,将制备的氧化石墨烯/金纳米复合材料作为SERS底物,监测了等离子体驱动表面催化4-硝基苯硫醇(4-NBT)生成对,对'-二巯基偶氮苯(DMAB)的过程。通过功率和时间相关SERS实验的系统比较,rGO/Au纳米粒子比Au纳米粒子具有更低的功率阈值和更高的催化效率,这为进一步了解金属与石墨烯的相互作用以及进一步研究等离子体驱动的化学反应提供了线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effective tuning and application of graphene-based Au nanocomposites as SERS substrates
Graphene-based noble metal nanocomposites have attracted tremendous research interest in the fields of surface-enhanced Raman scattering (SERS) recently. However, efficient utilization as SERS substrates has been impeded by the difficulty of tuning SERS enhancement effects induced from chemical and plasmonic enhancement by different preparation methods of graphene. Herein, three kinds of graphene-based Au hybrid, CVD-G/Au, GO/Au and rGO/Au, which were synthesized by physical sputtering and chemical in-situ crystallization growth methods, were fabricated to evaluate as SERS substrates. Simple methods were developed to enhance the Raman signals effectively by tuning both plasmonic and chemical enhancement, respectively. Besides, the prepared rGO/Au nanocomposites were used as SERS substrates to monitor the process of plasmon-driven surface-catalyzed reaction from 4-nitrobenzenethiol (4-NBT) to p,p'-dimercaptoazobenzene (DMAB). According to systematic comparisons during power- and time-dependent SERS experiments, rGO/Au was demonstrated to be with lower power threshold and higher catalytic efficiency than Au nanoparticles (NPs) toward the reaction, which provide clues to understand the interaction between metal and graphene as well as further study of plasmon-driven chemical reactions for further.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-layer coated nanorobot end-effector for efficient drug delivery A three-dimensional ZnO nanowires photodetector Relationship between electric properties and surface flatness of (ZnO)x(InN)1−x films on ZnO templates Inter-particle potential fluctuation of two fine particles suspended in Ar plasmas Study of γ-Fe2O3/Au core/shell nanoparticles as the contrast agent for high-Tc SQUID-based low field nuclear magnetic resonance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1