青藏高原暖季牧草高寒灌丛草甸梯度景观格局变化

IF 3.1 3区 环境科学与生态学 Q2 ECOLOGY Ecological Complexity Pub Date : 2022-03-01 DOI:10.1016/j.ecocom.2022.100979
Dawen Qian , Qian Li , Bo Fan , Xiaowei Guo , Yangong Du , Guangmin Cao
{"title":"青藏高原暖季牧草高寒灌丛草甸梯度景观格局变化","authors":"Dawen Qian ,&nbsp;Qian Li ,&nbsp;Bo Fan ,&nbsp;Xiaowei Guo ,&nbsp;Yangong Du ,&nbsp;Guangmin Cao","doi":"10.1016/j.ecocom.2022.100979","DOIUrl":null,"url":null,"abstract":"<div><p>Grassland degradation has been one of the major ecological concerns on the Qinghai-Tibet Plateau (QTP) in recent years, but the degradation of alpine shrub meadows, and in particular the changes in its surface landscape pattern, has been less well assessed. This study selected a warm-season pasture on the QTP as a study area, and used an unmanned aerial vehicle (UAV) to collect aerial photographs along the degradation gradient from late June to early July 2018. We then classified the surface landscape as alpine shrub, alpine meadow, bare soil and plateau pika hole and analyzed the landscape pattern changes at different degradation levels. The results showed that the alpine shrub and alpine meadow dominated landscape degraded to a pattern of alpine meadow and bare soil dominance and pika hole pervasiveness, during which vegetation cover declined and the overall landscape pattern tended to fragment. Landscape pattern characteristics related to the area, density, connectivity and boundaries respond more clearly to the shrub degradation, with moderate degradation being the key stage at which the surface landscape pattern changes dramatically. Our study demonstrates a potential application of UAV technology in the study of grassland degradation. Future research should focus on the status, mechanisms and ecological effects of alpine shrub meadows degradation and the quantitative relationships between surface landscape patterns and ecological functions.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"49 ","pages":"Article 100979"},"PeriodicalIF":3.1000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Landscape pattern changes across alpine shrub meadows gradient in warm-season pastures on the Qinghai-Tibet Plateau\",\"authors\":\"Dawen Qian ,&nbsp;Qian Li ,&nbsp;Bo Fan ,&nbsp;Xiaowei Guo ,&nbsp;Yangong Du ,&nbsp;Guangmin Cao\",\"doi\":\"10.1016/j.ecocom.2022.100979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Grassland degradation has been one of the major ecological concerns on the Qinghai-Tibet Plateau (QTP) in recent years, but the degradation of alpine shrub meadows, and in particular the changes in its surface landscape pattern, has been less well assessed. This study selected a warm-season pasture on the QTP as a study area, and used an unmanned aerial vehicle (UAV) to collect aerial photographs along the degradation gradient from late June to early July 2018. We then classified the surface landscape as alpine shrub, alpine meadow, bare soil and plateau pika hole and analyzed the landscape pattern changes at different degradation levels. The results showed that the alpine shrub and alpine meadow dominated landscape degraded to a pattern of alpine meadow and bare soil dominance and pika hole pervasiveness, during which vegetation cover declined and the overall landscape pattern tended to fragment. Landscape pattern characteristics related to the area, density, connectivity and boundaries respond more clearly to the shrub degradation, with moderate degradation being the key stage at which the surface landscape pattern changes dramatically. Our study demonstrates a potential application of UAV technology in the study of grassland degradation. Future research should focus on the status, mechanisms and ecological effects of alpine shrub meadows degradation and the quantitative relationships between surface landscape patterns and ecological functions.</p></div>\",\"PeriodicalId\":50559,\"journal\":{\"name\":\"Ecological Complexity\",\"volume\":\"49 \",\"pages\":\"Article 100979\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Complexity\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476945X22000010\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Complexity","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476945X22000010","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

近年来,草地退化已成为青藏高原主要的生态问题之一,但对高寒灌丛草甸退化,特别是其地表景观格局变化的评价却较少。以青藏高原暖季牧草为研究区,利用无人机于2018年6月下旬至7月上旬沿退化梯度进行航拍。将地表景观划分为高寒灌丛、高寒草甸、裸土和高原鼠兔洞,分析了不同退化程度下的景观格局变化。结果表明:高寒灌丛和高寒草甸为主的景观格局逐渐退化为高寒草甸和裸土为主、鼠洞普遍的格局,植被覆盖减少,整体景观格局趋于破碎化;与面积、密度、连通性和边界相关的景观格局特征对灌木退化的响应更为明显,其中中度退化是地表景观格局发生剧烈变化的关键阶段。我们的研究展示了无人机技术在草地退化研究中的潜在应用。未来的研究重点应放在高寒灌丛草甸退化的现状、机制、生态效应以及地表景观格局与生态功能的定量关系等方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Landscape pattern changes across alpine shrub meadows gradient in warm-season pastures on the Qinghai-Tibet Plateau

Grassland degradation has been one of the major ecological concerns on the Qinghai-Tibet Plateau (QTP) in recent years, but the degradation of alpine shrub meadows, and in particular the changes in its surface landscape pattern, has been less well assessed. This study selected a warm-season pasture on the QTP as a study area, and used an unmanned aerial vehicle (UAV) to collect aerial photographs along the degradation gradient from late June to early July 2018. We then classified the surface landscape as alpine shrub, alpine meadow, bare soil and plateau pika hole and analyzed the landscape pattern changes at different degradation levels. The results showed that the alpine shrub and alpine meadow dominated landscape degraded to a pattern of alpine meadow and bare soil dominance and pika hole pervasiveness, during which vegetation cover declined and the overall landscape pattern tended to fragment. Landscape pattern characteristics related to the area, density, connectivity and boundaries respond more clearly to the shrub degradation, with moderate degradation being the key stage at which the surface landscape pattern changes dramatically. Our study demonstrates a potential application of UAV technology in the study of grassland degradation. Future research should focus on the status, mechanisms and ecological effects of alpine shrub meadows degradation and the quantitative relationships between surface landscape patterns and ecological functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological Complexity
Ecological Complexity 环境科学-生态学
CiteScore
7.10
自引率
0.00%
发文量
24
审稿时长
3 months
期刊介绍: Ecological Complexity is an international journal devoted to the publication of high quality, peer-reviewed articles on all aspects of biocomplexity in the environment, theoretical ecology, and special issues on topics of current interest. The scope of the journal is wide and interdisciplinary with an integrated and quantitative approach. The journal particularly encourages submission of papers that integrate natural and social processes at appropriately broad spatio-temporal scales. Ecological Complexity will publish research into the following areas: • All aspects of biocomplexity in the environment and theoretical ecology • Ecosystems and biospheres as complex adaptive systems • Self-organization of spatially extended ecosystems • Emergent properties and structures of complex ecosystems • Ecological pattern formation in space and time • The role of biophysical constraints and evolutionary attractors on species assemblages • Ecological scaling (scale invariance, scale covariance and across scale dynamics), allometry, and hierarchy theory • Ecological topology and networks • Studies towards an ecology of complex systems • Complex systems approaches for the study of dynamic human-environment interactions • Using knowledge of nonlinear phenomena to better guide policy development for adaptation strategies and mitigation to environmental change • New tools and methods for studying ecological complexity
期刊最新文献
Enhancing maximum sustainable yield in a patchy prey–predator environment A scale-invariant method for quantifying the regularity of environmental spatial patterns Assessing the ecological complexity and uncertainty of predicting forest ecosystem services under climate change Transitive and intransitive structures in competition-based ecological communities The central importance of the honeybee (Apis mellifera L.) within plant-bee interaction networks decreases along a Neotropical elevational gradient
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1