基于虚拟叠加测量的植入层偏移检测研究

Leon van Dijk, K. M. Adal, Mathias Chastan, A. Lam, M. Larrañaga, Richard J. F. van Haren
{"title":"基于虚拟叠加测量的植入层偏移检测研究","authors":"Leon van Dijk, K. M. Adal, Mathias Chastan, A. Lam, M. Larrañaga, Richard J. F. van Haren","doi":"10.1109/ASMC49169.2020.9185290","DOIUrl":null,"url":null,"abstract":"Virtual overlay metrology has been developed for a series of nine implant layers using a hybrid approach that combines physical modeling with machine learning. The prediction model is evaluated on production data. A high prediction capability is achieved and the model is able to follow variations in the implant-layer overlay and to identify outliers. We will use the prediction model to link excursions to a possible root cause. Furthermore, a KPI based on scanner metrology is defined that can be monitored continuously, and for every wafer, for detecting excursions with a similar root cause.","PeriodicalId":6771,"journal":{"name":"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"101 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards Excursion Detection for Implant Layers based on Virtual Overlay Metrology\",\"authors\":\"Leon van Dijk, K. M. Adal, Mathias Chastan, A. Lam, M. Larrañaga, Richard J. F. van Haren\",\"doi\":\"10.1109/ASMC49169.2020.9185290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Virtual overlay metrology has been developed for a series of nine implant layers using a hybrid approach that combines physical modeling with machine learning. The prediction model is evaluated on production data. A high prediction capability is achieved and the model is able to follow variations in the implant-layer overlay and to identify outliers. We will use the prediction model to link excursions to a possible root cause. Furthermore, a KPI based on scanner metrology is defined that can be monitored continuously, and for every wafer, for detecting excursions with a similar root cause.\",\"PeriodicalId\":6771,\"journal\":{\"name\":\"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"volume\":\"101 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASMC49169.2020.9185290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC49169.2020.9185290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

虚拟覆盖计量已经开发了一系列九个植入层,使用混合方法,将物理建模与机器学习相结合。利用生产数据对预测模型进行了评价。该模型具有很高的预测能力,能够跟踪植入层叠加的变化并识别异常值。我们将使用预测模型将偏差与可能的根本原因联系起来。此外,还定义了基于扫描仪计量的KPI,可以对每个晶圆进行连续监测,以检测具有类似根本原因的偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Excursion Detection for Implant Layers based on Virtual Overlay Metrology
Virtual overlay metrology has been developed for a series of nine implant layers using a hybrid approach that combines physical modeling with machine learning. The prediction model is evaluated on production data. A high prediction capability is achieved and the model is able to follow variations in the implant-layer overlay and to identify outliers. We will use the prediction model to link excursions to a possible root cause. Furthermore, a KPI based on scanner metrology is defined that can be monitored continuously, and for every wafer, for detecting excursions with a similar root cause.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Systematic Missing Pattern Defects Introduced by Topcoat Change at PC Lithography: A Case Study in the Tandem Usage of Inspection Methods Computational Process Control Compatible Dimensional Metrology Tool: Through-focus Scanning Optical Microscopy Characterization of Sub-micron Metal Line Arrays Using Picosecond Ultrasonics An Artificial Neural Network Based Algorithm For Real Time Dispatching Decisions A Framework for Semi-Automated Fault Detection Configuration with Automated Feature Extraction and Limits Setting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1