H. Yamasaki, K. Terao, T. Suzuki, F. Simokawa, H. Takao
{"title":"微流控通道阵列中气体放电的常压等离子体喷射器","authors":"H. Yamasaki, K. Terao, T. Suzuki, F. Simokawa, H. Takao","doi":"10.1109/MEMSYS.2013.6474213","DOIUrl":null,"url":null,"abstract":"Application of `small area' plasma has become important for bio/medical applications. In this study, a novel device to create patternable atmospheric-pressure plasma-jet array is newly proposed, and the evaluation results of the fabricated devices are reported for the first time. The array device is fabricated by bonding a PDMS microchannel layer and a glass wafer. Discharge electrodes for plasma creation are fabricated by Au/Cr layers. Since the discharge starting voltages strongly depends on shapes and the gap of two electrodes, they were designed and selected based on the Paschen's law to lower their discharge starting voltages. Micro plasma jet array are created by multi-channel gas discharges individually in microfluidic channels on a chip, and a 2.54mm spatial resolution of plasma-jet was obtained in the first fabricated device.","PeriodicalId":92162,"journal":{"name":"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)","volume":"17 1","pages":"205-208"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Patternable atmospheric-pressure plasma jets with gas discharge in microfluidic channel array\",\"authors\":\"H. Yamasaki, K. Terao, T. Suzuki, F. Simokawa, H. Takao\",\"doi\":\"10.1109/MEMSYS.2013.6474213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Application of `small area' plasma has become important for bio/medical applications. In this study, a novel device to create patternable atmospheric-pressure plasma-jet array is newly proposed, and the evaluation results of the fabricated devices are reported for the first time. The array device is fabricated by bonding a PDMS microchannel layer and a glass wafer. Discharge electrodes for plasma creation are fabricated by Au/Cr layers. Since the discharge starting voltages strongly depends on shapes and the gap of two electrodes, they were designed and selected based on the Paschen's law to lower their discharge starting voltages. Micro plasma jet array are created by multi-channel gas discharges individually in microfluidic channels on a chip, and a 2.54mm spatial resolution of plasma-jet was obtained in the first fabricated device.\",\"PeriodicalId\":92162,\"journal\":{\"name\":\"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)\",\"volume\":\"17 1\",\"pages\":\"205-208\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2013.6474213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2013.6474213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Patternable atmospheric-pressure plasma jets with gas discharge in microfluidic channel array
Application of `small area' plasma has become important for bio/medical applications. In this study, a novel device to create patternable atmospheric-pressure plasma-jet array is newly proposed, and the evaluation results of the fabricated devices are reported for the first time. The array device is fabricated by bonding a PDMS microchannel layer and a glass wafer. Discharge electrodes for plasma creation are fabricated by Au/Cr layers. Since the discharge starting voltages strongly depends on shapes and the gap of two electrodes, they were designed and selected based on the Paschen's law to lower their discharge starting voltages. Micro plasma jet array are created by multi-channel gas discharges individually in microfluidic channels on a chip, and a 2.54mm spatial resolution of plasma-jet was obtained in the first fabricated device.