{"title":"通过对通信通道的选择性非并发测试,对片上网络进行透明的终身内置自我测试","authors":"Marco Balboni, D. Bertozzi","doi":"10.1145/3073763.3073765","DOIUrl":null,"url":null,"abstract":"In some application domains (e.g., mission-critical systems), proactive detection of reliability threats or prompt fault containment are mandatory in order to avoid or limit the malfunctioning of electronic systems as an effect of the onset of permanent faults at runtime. As an essential milestone for the design of these systems, this paper presents a distributed and lightweight control framework for the built-in self-testing of networks-on-chip (NoCs) in the background while applications are running. The main idea of this concurrent online testing framework consists of modularizing the NoC into communication channels, of selectively taking such channels offline for non-concurrent testing, and of reconfiguring the NoC routing function to route packets around the temporary blockages to preserve network availability.","PeriodicalId":20560,"journal":{"name":"Proceedings of the 2nd International Workshop on Advanced Interconnect Solutions and Technologies for Emerging Computing Systems","volume":"386 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transparent lifetime built-in self-testing of networks-on-chip through the selective non-concurrent testing of their communication channels\",\"authors\":\"Marco Balboni, D. Bertozzi\",\"doi\":\"10.1145/3073763.3073765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In some application domains (e.g., mission-critical systems), proactive detection of reliability threats or prompt fault containment are mandatory in order to avoid or limit the malfunctioning of electronic systems as an effect of the onset of permanent faults at runtime. As an essential milestone for the design of these systems, this paper presents a distributed and lightweight control framework for the built-in self-testing of networks-on-chip (NoCs) in the background while applications are running. The main idea of this concurrent online testing framework consists of modularizing the NoC into communication channels, of selectively taking such channels offline for non-concurrent testing, and of reconfiguring the NoC routing function to route packets around the temporary blockages to preserve network availability.\",\"PeriodicalId\":20560,\"journal\":{\"name\":\"Proceedings of the 2nd International Workshop on Advanced Interconnect Solutions and Technologies for Emerging Computing Systems\",\"volume\":\"386 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd International Workshop on Advanced Interconnect Solutions and Technologies for Emerging Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3073763.3073765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Workshop on Advanced Interconnect Solutions and Technologies for Emerging Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3073763.3073765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transparent lifetime built-in self-testing of networks-on-chip through the selective non-concurrent testing of their communication channels
In some application domains (e.g., mission-critical systems), proactive detection of reliability threats or prompt fault containment are mandatory in order to avoid or limit the malfunctioning of electronic systems as an effect of the onset of permanent faults at runtime. As an essential milestone for the design of these systems, this paper presents a distributed and lightweight control framework for the built-in self-testing of networks-on-chip (NoCs) in the background while applications are running. The main idea of this concurrent online testing framework consists of modularizing the NoC into communication channels, of selectively taking such channels offline for non-concurrent testing, and of reconfiguring the NoC routing function to route packets around the temporary blockages to preserve network availability.