Poorna Lakshmi Uppalapati, Balasubramanian Malayappan, Narayan Krishnaswamy, P. Pattnaik
{"title":"基于静电可调谐MOEMS波导Bragg光栅的DWDM光滤波器","authors":"Poorna Lakshmi Uppalapati, Balasubramanian Malayappan, Narayan Krishnaswamy, P. Pattnaik","doi":"10.1117/1.JMM.18.1.015503","DOIUrl":null,"url":null,"abstract":"Abstract. An electrostatically actuated MEMS cantilever beam-based waveguide Bragg grating tunable optical filter has been designed and simulated. The tunable filter is obtained by shifting the reflected wavelength of the waveguide Bragg grating located on the electrostatically actuated cantilever beam. An approach to increasing the electrostatic actuation of the beam by having an electrode underneath the beam is used and a large wavelength tuning range for the optical filter is achieved. Dimensions of the device are chosen such that full-width-half-maximum is 0.75 nm, thus capable of filtering adjacent channels of the dense wavelength division multiplexing (DWDM) network. The filter has a tuning range of 10.65 nm (1552.52 to 1563.17 nm) providing add/drop functionality for 14 adjacent DWDM channels.","PeriodicalId":16522,"journal":{"name":"Journal of Micro/Nanolithography, MEMS, and MOEMS","volume":"35 1","pages":"015503 - 015503"},"PeriodicalIF":1.5000,"publicationDate":"2019-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Electrostatically tunable MOEMS waveguide Bragg grating-based DWDM optical filter\",\"authors\":\"Poorna Lakshmi Uppalapati, Balasubramanian Malayappan, Narayan Krishnaswamy, P. Pattnaik\",\"doi\":\"10.1117/1.JMM.18.1.015503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. An electrostatically actuated MEMS cantilever beam-based waveguide Bragg grating tunable optical filter has been designed and simulated. The tunable filter is obtained by shifting the reflected wavelength of the waveguide Bragg grating located on the electrostatically actuated cantilever beam. An approach to increasing the electrostatic actuation of the beam by having an electrode underneath the beam is used and a large wavelength tuning range for the optical filter is achieved. Dimensions of the device are chosen such that full-width-half-maximum is 0.75 nm, thus capable of filtering adjacent channels of the dense wavelength division multiplexing (DWDM) network. The filter has a tuning range of 10.65 nm (1552.52 to 1563.17 nm) providing add/drop functionality for 14 adjacent DWDM channels.\",\"PeriodicalId\":16522,\"journal\":{\"name\":\"Journal of Micro/Nanolithography, MEMS, and MOEMS\",\"volume\":\"35 1\",\"pages\":\"015503 - 015503\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2019-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micro/Nanolithography, MEMS, and MOEMS\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JMM.18.1.015503\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro/Nanolithography, MEMS, and MOEMS","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.JMM.18.1.015503","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Abstract. An electrostatically actuated MEMS cantilever beam-based waveguide Bragg grating tunable optical filter has been designed and simulated. The tunable filter is obtained by shifting the reflected wavelength of the waveguide Bragg grating located on the electrostatically actuated cantilever beam. An approach to increasing the electrostatic actuation of the beam by having an electrode underneath the beam is used and a large wavelength tuning range for the optical filter is achieved. Dimensions of the device are chosen such that full-width-half-maximum is 0.75 nm, thus capable of filtering adjacent channels of the dense wavelength division multiplexing (DWDM) network. The filter has a tuning range of 10.65 nm (1552.52 to 1563.17 nm) providing add/drop functionality for 14 adjacent DWDM channels.