Xuan-Thuan Nguyen, Trong-Thuc Hoang, Hong-Thu Nguyen, Katsumi Inoue, C. Pham
{"title":"基于65nm SOTB CMOS的219 μ w 1d -to- 2d优先编码器","authors":"Xuan-Thuan Nguyen, Trong-Thuc Hoang, Hong-Thu Nguyen, Katsumi Inoue, C. Pham","doi":"10.1109/ISCAS.2018.8351406","DOIUrl":null,"url":null,"abstract":"Priority encoder (PE) is recognized as an indispensable component in the content-addressable memory. In this paper, two efficient architecture of 64-bit PE and 256-bit PE using 1D-array to 2D-array conversion (1D-to-2D) method are presented and implemented in a 65-nm Silicon-on-thin-buried-oxide (SOTB) CMOS process. The 1D-to-2D method is exploited because of its advantages in large-sized PE construction. The SOTB CMOS process is utilized because of its prominent advantages of low-power and high-performance configuration using back bias voltages. The measurement results at 1.2 V showed that a fabricated PE256 chip was fully operational at 45 MHz and consumed approximately 219 μW. Additionally, in sleep mode, the leakage power dropped as low as 0.34 μW at 0.6 V.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"42 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A 219-μW 1D-to-2D-Based Priority Encoder on 65-nm SOTB CMOS\",\"authors\":\"Xuan-Thuan Nguyen, Trong-Thuc Hoang, Hong-Thu Nguyen, Katsumi Inoue, C. Pham\",\"doi\":\"10.1109/ISCAS.2018.8351406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Priority encoder (PE) is recognized as an indispensable component in the content-addressable memory. In this paper, two efficient architecture of 64-bit PE and 256-bit PE using 1D-array to 2D-array conversion (1D-to-2D) method are presented and implemented in a 65-nm Silicon-on-thin-buried-oxide (SOTB) CMOS process. The 1D-to-2D method is exploited because of its advantages in large-sized PE construction. The SOTB CMOS process is utilized because of its prominent advantages of low-power and high-performance configuration using back bias voltages. The measurement results at 1.2 V showed that a fabricated PE256 chip was fully operational at 45 MHz and consumed approximately 219 μW. Additionally, in sleep mode, the leakage power dropped as low as 0.34 μW at 0.6 V.\",\"PeriodicalId\":6569,\"journal\":{\"name\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"volume\":\"42 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2018.8351406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2018.8351406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 219-μW 1D-to-2D-Based Priority Encoder on 65-nm SOTB CMOS
Priority encoder (PE) is recognized as an indispensable component in the content-addressable memory. In this paper, two efficient architecture of 64-bit PE and 256-bit PE using 1D-array to 2D-array conversion (1D-to-2D) method are presented and implemented in a 65-nm Silicon-on-thin-buried-oxide (SOTB) CMOS process. The 1D-to-2D method is exploited because of its advantages in large-sized PE construction. The SOTB CMOS process is utilized because of its prominent advantages of low-power and high-performance configuration using back bias voltages. The measurement results at 1.2 V showed that a fabricated PE256 chip was fully operational at 45 MHz and consumed approximately 219 μW. Additionally, in sleep mode, the leakage power dropped as low as 0.34 μW at 0.6 V.