Tung Mai Hung Thanh, The Do Minh, Hien Tran Thị Thu, Chi Nguyen Thi Phuong Le, Quoc Nguyen Tri, Binh Nguyen Thi Thanh, Mai Nguyen Vu Ngoc, Hiep Phan Phuoc Minh, Cam Nguyen Thi Dieu
{"title":"水中抗生素降解用WO3/AgI光催化剂的合成","authors":"Tung Mai Hung Thanh, The Do Minh, Hien Tran Thị Thu, Chi Nguyen Thi Phuong Le, Quoc Nguyen Tri, Binh Nguyen Thi Thanh, Mai Nguyen Vu Ngoc, Hiep Phan Phuoc Minh, Cam Nguyen Thi Dieu","doi":"10.51316/jca.2022.054","DOIUrl":null,"url":null,"abstract":"In this paper, AgI was successfully synthesized in the presence of WO3 to form AgI/WO3 Z scheme hetero-junction by solid-phase heating method and by varying the WO3 mole ratio (1:0.5, 1:1, 1:2 and 1:3) with respect to the AgI. The PL spectra indicate that the introduction of WO3 to AgI can efficiently suppress the recombination of photo-generated charge carrier. The photocatalytic activity of WO3/AgI was investigated under visible light by using the Amoxicillin (AMX) antibiotic as an organic target in aqueous solution. The WO3/AgI photoactivity for AXM was greatly enhanced when both materials were coupled to form a Z-scheme system. The highest degradation percentage was reached using the WO3/AgI material ratio mole of 1/1. As compared with to the pure WO3 and AgI, the WO3/AgI hybrid material show remarkably improved visible-induced photocatalytic activities in degrading AMX for the enhanced transport ability of electrons and holes. ","PeriodicalId":23507,"journal":{"name":"Vietnam Journal of Catalysis and Adsorption","volume":"79 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of WO3/AgI photocatalysts applying for degradation of antibiotics in water\",\"authors\":\"Tung Mai Hung Thanh, The Do Minh, Hien Tran Thị Thu, Chi Nguyen Thi Phuong Le, Quoc Nguyen Tri, Binh Nguyen Thi Thanh, Mai Nguyen Vu Ngoc, Hiep Phan Phuoc Minh, Cam Nguyen Thi Dieu\",\"doi\":\"10.51316/jca.2022.054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, AgI was successfully synthesized in the presence of WO3 to form AgI/WO3 Z scheme hetero-junction by solid-phase heating method and by varying the WO3 mole ratio (1:0.5, 1:1, 1:2 and 1:3) with respect to the AgI. The PL spectra indicate that the introduction of WO3 to AgI can efficiently suppress the recombination of photo-generated charge carrier. The photocatalytic activity of WO3/AgI was investigated under visible light by using the Amoxicillin (AMX) antibiotic as an organic target in aqueous solution. The WO3/AgI photoactivity for AXM was greatly enhanced when both materials were coupled to form a Z-scheme system. The highest degradation percentage was reached using the WO3/AgI material ratio mole of 1/1. As compared with to the pure WO3 and AgI, the WO3/AgI hybrid material show remarkably improved visible-induced photocatalytic activities in degrading AMX for the enhanced transport ability of electrons and holes. \",\"PeriodicalId\":23507,\"journal\":{\"name\":\"Vietnam Journal of Catalysis and Adsorption\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vietnam Journal of Catalysis and Adsorption\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51316/jca.2022.054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Catalysis and Adsorption","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51316/jca.2022.054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis of WO3/AgI photocatalysts applying for degradation of antibiotics in water
In this paper, AgI was successfully synthesized in the presence of WO3 to form AgI/WO3 Z scheme hetero-junction by solid-phase heating method and by varying the WO3 mole ratio (1:0.5, 1:1, 1:2 and 1:3) with respect to the AgI. The PL spectra indicate that the introduction of WO3 to AgI can efficiently suppress the recombination of photo-generated charge carrier. The photocatalytic activity of WO3/AgI was investigated under visible light by using the Amoxicillin (AMX) antibiotic as an organic target in aqueous solution. The WO3/AgI photoactivity for AXM was greatly enhanced when both materials were coupled to form a Z-scheme system. The highest degradation percentage was reached using the WO3/AgI material ratio mole of 1/1. As compared with to the pure WO3 and AgI, the WO3/AgI hybrid material show remarkably improved visible-induced photocatalytic activities in degrading AMX for the enhanced transport ability of electrons and holes.