M. Mochizuki, Thang Nguyen, K. Mashiko, Y. Saito, X. P. Wu, T. Nguyen, V. Wuttijumnong
{"title":"热管和蒸汽室在高性能计算机中的热管理,以及全球变暖和环境的挑战","authors":"M. Mochizuki, Thang Nguyen, K. Mashiko, Y. Saito, X. P. Wu, T. Nguyen, V. Wuttijumnong","doi":"10.1109/IMPACT.2009.5382144","DOIUrl":null,"url":null,"abstract":"The trend of the computer processors performance and power consumption has been increased significantly each year. Heat dissipation has been increased but in contrast the size of die on the processor has been reduced or remained the same size due to nano-size circuit technology and thus the heat flux is critically high. The extreme high performance processors heat flux can be over 100 W/cm2, which is likely 10 times higher than the surface of the household standard clothes iron. The intention of this paper is to provide insight into various thermal management solution using heat pipes and vapor chambers as heat transfer devices. This paper includes designs, data, and discussions of various fan sink air cooling designs showing how the design changes to push the limit of the air cooling capability. The utilization of the two-phase fluid phenomena to spread the heat was a key factor to be the leader of extending the air cooling limit capability for high performance computers.","PeriodicalId":6410,"journal":{"name":"2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference","volume":"29 1","pages":"191-194"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Thermal management in high performance computers by use of heat Pipes and vapor chambers, and the challenges of global warming and environment\",\"authors\":\"M. Mochizuki, Thang Nguyen, K. Mashiko, Y. Saito, X. P. Wu, T. Nguyen, V. Wuttijumnong\",\"doi\":\"10.1109/IMPACT.2009.5382144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The trend of the computer processors performance and power consumption has been increased significantly each year. Heat dissipation has been increased but in contrast the size of die on the processor has been reduced or remained the same size due to nano-size circuit technology and thus the heat flux is critically high. The extreme high performance processors heat flux can be over 100 W/cm2, which is likely 10 times higher than the surface of the household standard clothes iron. The intention of this paper is to provide insight into various thermal management solution using heat pipes and vapor chambers as heat transfer devices. This paper includes designs, data, and discussions of various fan sink air cooling designs showing how the design changes to push the limit of the air cooling capability. The utilization of the two-phase fluid phenomena to spread the heat was a key factor to be the leader of extending the air cooling limit capability for high performance computers.\",\"PeriodicalId\":6410,\"journal\":{\"name\":\"2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference\",\"volume\":\"29 1\",\"pages\":\"191-194\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMPACT.2009.5382144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMPACT.2009.5382144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermal management in high performance computers by use of heat Pipes and vapor chambers, and the challenges of global warming and environment
The trend of the computer processors performance and power consumption has been increased significantly each year. Heat dissipation has been increased but in contrast the size of die on the processor has been reduced or remained the same size due to nano-size circuit technology and thus the heat flux is critically high. The extreme high performance processors heat flux can be over 100 W/cm2, which is likely 10 times higher than the surface of the household standard clothes iron. The intention of this paper is to provide insight into various thermal management solution using heat pipes and vapor chambers as heat transfer devices. This paper includes designs, data, and discussions of various fan sink air cooling designs showing how the design changes to push the limit of the air cooling capability. The utilization of the two-phase fluid phenomena to spread the heat was a key factor to be the leader of extending the air cooling limit capability for high performance computers.