{"title":"短沟道石墨烯fet的负差分电阻:半解析模型和模拟","authors":"R. Grassi, T. Low, A. Gnudi, G. Baccarani","doi":"10.1109/DRC.2012.6256975","DOIUrl":null,"url":null,"abstract":"We discuss the phenomenon of negative output differential resistance of short-channel graphene FETs at room temperature, whose physical origin arises from a transport-mode bottleneck induced by the contact-doped graphene. We outline a simple semianalytical model, based on semiclassical ballistic transport, which captures this effect and qualitatively reproduces results from the non-equilibrium Green's function approach (NEGF). We find that this effect is robust against phonon scattering.","PeriodicalId":6808,"journal":{"name":"70th Device Research Conference","volume":"14 1","pages":"107-108"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Negative differential resistance in short-channel graphene FETs: Semianalytical model and simulations\",\"authors\":\"R. Grassi, T. Low, A. Gnudi, G. Baccarani\",\"doi\":\"10.1109/DRC.2012.6256975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the phenomenon of negative output differential resistance of short-channel graphene FETs at room temperature, whose physical origin arises from a transport-mode bottleneck induced by the contact-doped graphene. We outline a simple semianalytical model, based on semiclassical ballistic transport, which captures this effect and qualitatively reproduces results from the non-equilibrium Green's function approach (NEGF). We find that this effect is robust against phonon scattering.\",\"PeriodicalId\":6808,\"journal\":{\"name\":\"70th Device Research Conference\",\"volume\":\"14 1\",\"pages\":\"107-108\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"70th Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2012.6256975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"70th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2012.6256975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Negative differential resistance in short-channel graphene FETs: Semianalytical model and simulations
We discuss the phenomenon of negative output differential resistance of short-channel graphene FETs at room temperature, whose physical origin arises from a transport-mode bottleneck induced by the contact-doped graphene. We outline a simple semianalytical model, based on semiclassical ballistic transport, which captures this effect and qualitatively reproduces results from the non-equilibrium Green's function approach (NEGF). We find that this effect is robust against phonon scattering.