{"title":"用于高效率光伏应用的大输入电压范围DC-DC转换器","authors":"J. Aguillon-Garcia, P. Bañuelos-Sánchez","doi":"10.1109/EPE.2014.6910697","DOIUrl":null,"url":null,"abstract":"It is known that, the energy extracted from photovoltaic (PV) panels oscillates in magnitude during the light-day interval. In addition, an ideal location of PV systems involves the awareness of solar supply characteristics in order to establish a better use of this resource. In the solar energy systems this solar irradiance variation is partially engaged, limiting the converter's transformation rate for a certain input amount and leaving the rest of energy unconverted. This lends a restricted use of photovoltaic panel's energy capability. In order to utilize at its maximum the energy provided from a PV system, this manuscript proposes a topology that can cope with marginal input voltage variations from 60VDC up to 1050VDC for a steady output voltage of 700VDC. This output voltage value is suitable for any interlink post-regulation architecture. Based on previous observations, this paper presents a wide-input voltage high-efficiency non-isolated single-control topology. Analysis, operating stages and experimental results for a 3kW prototype are presented.","PeriodicalId":6508,"journal":{"name":"2014 16th European Conference on Power Electronics and Applications","volume":"14 1 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large input-voltage range DC-DC converter for high-efficiency PV applications\",\"authors\":\"J. Aguillon-Garcia, P. Bañuelos-Sánchez\",\"doi\":\"10.1109/EPE.2014.6910697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known that, the energy extracted from photovoltaic (PV) panels oscillates in magnitude during the light-day interval. In addition, an ideal location of PV systems involves the awareness of solar supply characteristics in order to establish a better use of this resource. In the solar energy systems this solar irradiance variation is partially engaged, limiting the converter's transformation rate for a certain input amount and leaving the rest of energy unconverted. This lends a restricted use of photovoltaic panel's energy capability. In order to utilize at its maximum the energy provided from a PV system, this manuscript proposes a topology that can cope with marginal input voltage variations from 60VDC up to 1050VDC for a steady output voltage of 700VDC. This output voltage value is suitable for any interlink post-regulation architecture. Based on previous observations, this paper presents a wide-input voltage high-efficiency non-isolated single-control topology. Analysis, operating stages and experimental results for a 3kW prototype are presented.\",\"PeriodicalId\":6508,\"journal\":{\"name\":\"2014 16th European Conference on Power Electronics and Applications\",\"volume\":\"14 1 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 16th European Conference on Power Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPE.2014.6910697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 16th European Conference on Power Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPE.2014.6910697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Large input-voltage range DC-DC converter for high-efficiency PV applications
It is known that, the energy extracted from photovoltaic (PV) panels oscillates in magnitude during the light-day interval. In addition, an ideal location of PV systems involves the awareness of solar supply characteristics in order to establish a better use of this resource. In the solar energy systems this solar irradiance variation is partially engaged, limiting the converter's transformation rate for a certain input amount and leaving the rest of energy unconverted. This lends a restricted use of photovoltaic panel's energy capability. In order to utilize at its maximum the energy provided from a PV system, this manuscript proposes a topology that can cope with marginal input voltage variations from 60VDC up to 1050VDC for a steady output voltage of 700VDC. This output voltage value is suitable for any interlink post-regulation architecture. Based on previous observations, this paper presents a wide-input voltage high-efficiency non-isolated single-control topology. Analysis, operating stages and experimental results for a 3kW prototype are presented.