硒(Se)和汞(Hg)可能影响无机砷的甲基化和毒性,但需要进一步研究无机砷、硒和汞的联合作用

U. Chowdhury
{"title":"硒(Se)和汞(Hg)可能影响无机砷的甲基化和毒性,但需要进一步研究无机砷、硒和汞的联合作用","authors":"U. Chowdhury","doi":"10.55124/jtes.v1i1.46","DOIUrl":null,"url":null,"abstract":"Our studies have indicated that the relative concentration of Se or Hg to As in urine and blood positively correlates with percentage of inorganic arsenic (% Inorg-As) and percentage of monomethlyarsonic acid [% MMA (V)]. We also found a negative correlation with percentage of dimethylarsinic acid [% DMA (V)] and the ratio of % DMA (V) to % MMA (V). In another study, we found that a group of proteins were significantly over expressed and conversely other groups were under-expressed in tissues in Na-As (III) treated hamsters. \nIntroduction.Inorganic arsenic (Inorg-As) in drinking water.One of the largest public health problems at present is the drinking of water containing levels of Inorg-As that are known to be carcinogenic. At least 200 million people globally are at risk of dying because of arsenic (As) in their drinking water1-3. The chronic ingestion of Inorg-As can results in skin cancer, bladder cancer, lung cancer, and cancer of other organs1-3. The maximum contamination level (MCL) of U.S. drinking water for arsenic is 10 ug/L. The arsenic related public health problem in the U.S. is not at present anywhere near that of India4, Bangladesh4, and other countries5. \nMetabolism and toxicity of Inorg-As and arsenic species.Inorg-As is metabolized in the body by alternating reduction of pentavalent arsenic to trivalent form by enzymes and addition of a methyl group from S-adenosylmethionine6, 7; it is excreted mainly in urine as DMA (V)8. Inorganic arsenate [Inorg-As (V)]is biotransformed to Inorg-As (III), MMA (V), MMA (III), DMA (V), and DMA (III)6(Fig. 1). Therefore, the study of the toxicology of Inorg-As (V) involves at least these six chemical forms of arsenic. Studies reported the presence of 3+ oxidation state arsenic biotransformants [MMA (III) and DMA (III)] in human urine9and in animal tissues10. The MMA (III) and DMA (III) are more toxic than other arsenicals11, 12. In particular MMA (III) is highly toxic11, 12. In increased % MMA in urine has been recognized in arsenic toxicity13. In addition, people with a small % MMA in urine show less retention of arsenic14. Thus, the higher prevalence of toxic effects with increased % MMA in urine could be attributed to the presence of toxic MMA (III) in the tissue. Previous studies also indicated that males are more susceptible to the As related skin effects than females13, 15. A study in the U.S population reported that females excreted a lower % Inorg-As as well as % MMA, and a higher % DMA than did males16. \nAbbreviation: SAM, S-adenosyl-L-methionine; SAHC, S-adenosyl-L-homocysteine. \nDifferences in susceptibility to arsenic toxicity might be manifested by differences in arsenic metabolism among people. Several factors (for examples, genetic factors, sex, duration and dosage of exposure, nutritional and dietary factors, etc.) could be influence for biotransformation of Inorg-As,6, 17 and other unknown factors may also be involved. \nThe interaction between As, Se, and Hg.The toxicity of one metal or metalloid can be dramatically modulated by the interaction with other toxic and essential elements18. Arsenic and Hg are toxic elements, and Se is required to maintain good health19. But Se is also toxic at high levels20. Recent reports point out the increased risk of squamous cell carcinoma and non-melanoma skin cancer in those treated with 200 ug/day of selenium (Nutritional Prevention of Cancer Trial in the United States)21. However, it is well known that As and Se as well as Se and Hg act as antagonists22. It was also reported that Inorg-As (III) influenced the interaction between selenite and methyl mercury23. A possible molecular link between As, Se, and Hg has been proposed by Korbas et al. (2008)24. The identifying complexes between the interaction of As and Se, Se and Hg as well as As, Se, and Hg in blood of rabbit are shown in Table 1. \nInfluence of Se and Hg on the metabolism of Inorg-As.The studies have reported that Se supplementation decreased the As-induced toxicity25, 26. The concentrations of urinary Se expressed as ug/L were negatively correlated with urinary % Inorg-As and positively correlated with % DMA27. The study did not address the urinary creatinine adjustment27. Other researchers suggested that Se and Hg decreased As methylation28-31(Table 2). They also suggested that the synthesis of DMA from MMA might be more susceptible to inhibition by Se (IV)29 as well as by Hg (II)30,31 compared to the production of MMA from Inorg-As (III). The inhibitory effects of Se and Hg were concentration dependent28-31. \nThe literature suggests that reduced methylation capacity with increased % MMA (V), decreased % DMA (V), or decreased ratios of % DMA to % MMA in urine is positively associated with various lesions32. Lesions include skin cancer and bladder cancer32. The results were obtained from inorganic arsenic exposed subjects32. Our concern involves the combination of low arsenic (As) and high selenium (Se) ingestion. This can inhibit methylation of arsenic to take it to a toxic level in the tissue. \nDietary sources of Se and Hg.Global selenium (Se) source are vegetables in the diet. In the United States, meat and bread are the common source. Selenium deficiency in the US is rare. The US Food and Drug Administration (FDA) has found toxic levels of Se in dietary supplements, up to 200 times greater than the amount stated on the label33. The samples contained up to 40,800 ug Se per recommended serving. \nFor the general population, the most important pathway of exposure to mercury (Hg) is ingestion of methyl mercury in foods. Fish (including tuna, a food commonly eaten by children), other seafood, and marine mammals contain the highest concentrations. The FDA has set a maximum permissible level of 1 ppm of methyl mercury in the seafood34. The people also exposed mercury via amalgams35. \nProteomic study of Inorg-As (III) injury.Proteomics is a powerful tool developed to enhance the study of complex biological system36. This technique has been extensively employed to investigate the proteome response of cells to drugs and other diseases37, 38. A proteome analysis of the Na-As (III) response in cultured lung cells found in vitro oxidative stress-induced apoptosis39. However, to our knowledge, no in vivo proteomic study of Inorg-As (III) has yet been conducted to improve our understanding of the cellular proteome response to Inorg-As (III) except our preliminary study 40. \nPreliminary Studies: Results and DiscussionThe existing data (Fig. 1) from our laboratory and others show the complex nature of Inorg-As metabolism. For many years, the major way to study, arsenic (As) metabolism was to measure InorgAs (V), Inorg-As (III), MMA (V), and DMA (V) in urine of people chronically exposed to As in their drinking water. Our investigations demonstrated for the first time that MMA (III) and DMA (III) are found in human urine9. Also we have identified MMA (III) and DMA (III) in the tissues of mice and hamsters exposed to sodium arsenate [Na-As (V)]10, 41. \nInfluence of Se as well as Hg on the As methyltransferase.We have reported that Se (IV) as well as mercuric chloride (HgCl2) inhibited As (III) methyltransferase and MMA (III) methyltransferase in rabbit liver cytosol. Mercuric chloride was found to be a more potent inhibitor of MMA (III) methyltransferase than As (III) methyltransferase30. These results suggested that Se and Hg decreased arsenic methylation. The inhibitory effects of Se and Hg were concentration dependent30. \nInfluence of Se and Hg in urine and blood on the percentage of urinary As metabolites.Our human studies indicated that the ratios of the concentrations of Se or Hg to As in urine and blood were positively correlated with % Inorg-As and % MMA (V). But it negatively correlated with % DMA (V) and the ratios of % DMA (V) to % MMA (V) in urine of both males and females (unpublished data) (Table 3). These results confirmed that the inhibitory effects of Se as well as Hg for the methylation of Inorg-As in humans were concentration dependent. We also found that the concentrations of Se and Hg were negatively correlated with % Inorg-As and % MMA (V). Conversely it correlated positively with % DMA (V) and the ratios of % DMA (V) to % MMA (V) in urine of both sexes (unpublished data). These correlations were not statistically significant when urinary concentrations of Se and Hg were adjusted for urinary creatinine (Table 3). Interactions of As, Se, Hg and its relationship with methylation of arsenic are summarized in Figure 2. \nSex difference distribution of arsenic species in urine.Our results indicate that females have more methylation capacity of arsenic as compared to males. In our human studies (n= 191) in Mexico, we found that females (n= 98) had lower % MMA (p<0.001) and higher % DMA (p=0.006) when compared to males (n= 93) (Fig. 3). The means ratio of % MMA (V) to % Inorg-As and % DMA (V) to %MMA (V) were also lower (p<0.05) and higher (p<0.001), respectively in females compared to males. \nThe protein expression profiles in the tissues of hamsters exposed to Na-As (III).In our preliminary studies40, hamsters were exposed to Na-As (III) (173 pg/ml as As) in their drinking water for 6 days and control hamsters were given only the water used to make the solutions for the experimental animals. After DIGE (Two-dimensional differential in gel electrophoresis) and analysis by the DeCyder software, several protein spots were found to be over-expressed (red spot) and several were under expressed (green spot) as compared to control (Figs. 4a-c). Three proteins (one was over-expressed and two were under-expressed) of each tissue (liver and urinary bladder) were identified by LC-MS/MS (liquid chromatography-tandem mass spectrometry).DIGE in combination with LC-MS/MS is a powerful tool that may help cancer investigators to understand the molecular mechanisms of cancer progression due to Inorg-As. \nPropose a new researchThese results suggested that seleni","PeriodicalId":17507,"journal":{"name":"Journal of Toxicology and Environmental Health Sciences","volume":"125 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Selenium (Se) as well as mercury (Hg) may influence the methylation and toxicity of inorganic arsenic, but further research is needed with combination of Inorg-arsenic, Se, and Hg\",\"authors\":\"U. Chowdhury\",\"doi\":\"10.55124/jtes.v1i1.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our studies have indicated that the relative concentration of Se or Hg to As in urine and blood positively correlates with percentage of inorganic arsenic (% Inorg-As) and percentage of monomethlyarsonic acid [% MMA (V)]. We also found a negative correlation with percentage of dimethylarsinic acid [% DMA (V)] and the ratio of % DMA (V) to % MMA (V). In another study, we found that a group of proteins were significantly over expressed and conversely other groups were under-expressed in tissues in Na-As (III) treated hamsters. \\nIntroduction.Inorganic arsenic (Inorg-As) in drinking water.One of the largest public health problems at present is the drinking of water containing levels of Inorg-As that are known to be carcinogenic. At least 200 million people globally are at risk of dying because of arsenic (As) in their drinking water1-3. The chronic ingestion of Inorg-As can results in skin cancer, bladder cancer, lung cancer, and cancer of other organs1-3. The maximum contamination level (MCL) of U.S. drinking water for arsenic is 10 ug/L. The arsenic related public health problem in the U.S. is not at present anywhere near that of India4, Bangladesh4, and other countries5. \\nMetabolism and toxicity of Inorg-As and arsenic species.Inorg-As is metabolized in the body by alternating reduction of pentavalent arsenic to trivalent form by enzymes and addition of a methyl group from S-adenosylmethionine6, 7; it is excreted mainly in urine as DMA (V)8. Inorganic arsenate [Inorg-As (V)]is biotransformed to Inorg-As (III), MMA (V), MMA (III), DMA (V), and DMA (III)6(Fig. 1). Therefore, the study of the toxicology of Inorg-As (V) involves at least these six chemical forms of arsenic. Studies reported the presence of 3+ oxidation state arsenic biotransformants [MMA (III) and DMA (III)] in human urine9and in animal tissues10. The MMA (III) and DMA (III) are more toxic than other arsenicals11, 12. In particular MMA (III) is highly toxic11, 12. In increased % MMA in urine has been recognized in arsenic toxicity13. In addition, people with a small % MMA in urine show less retention of arsenic14. Thus, the higher prevalence of toxic effects with increased % MMA in urine could be attributed to the presence of toxic MMA (III) in the tissue. Previous studies also indicated that males are more susceptible to the As related skin effects than females13, 15. A study in the U.S population reported that females excreted a lower % Inorg-As as well as % MMA, and a higher % DMA than did males16. \\nAbbreviation: SAM, S-adenosyl-L-methionine; SAHC, S-adenosyl-L-homocysteine. \\nDifferences in susceptibility to arsenic toxicity might be manifested by differences in arsenic metabolism among people. Several factors (for examples, genetic factors, sex, duration and dosage of exposure, nutritional and dietary factors, etc.) could be influence for biotransformation of Inorg-As,6, 17 and other unknown factors may also be involved. \\nThe interaction between As, Se, and Hg.The toxicity of one metal or metalloid can be dramatically modulated by the interaction with other toxic and essential elements18. Arsenic and Hg are toxic elements, and Se is required to maintain good health19. But Se is also toxic at high levels20. Recent reports point out the increased risk of squamous cell carcinoma and non-melanoma skin cancer in those treated with 200 ug/day of selenium (Nutritional Prevention of Cancer Trial in the United States)21. However, it is well known that As and Se as well as Se and Hg act as antagonists22. It was also reported that Inorg-As (III) influenced the interaction between selenite and methyl mercury23. A possible molecular link between As, Se, and Hg has been proposed by Korbas et al. (2008)24. The identifying complexes between the interaction of As and Se, Se and Hg as well as As, Se, and Hg in blood of rabbit are shown in Table 1. \\nInfluence of Se and Hg on the metabolism of Inorg-As.The studies have reported that Se supplementation decreased the As-induced toxicity25, 26. The concentrations of urinary Se expressed as ug/L were negatively correlated with urinary % Inorg-As and positively correlated with % DMA27. The study did not address the urinary creatinine adjustment27. Other researchers suggested that Se and Hg decreased As methylation28-31(Table 2). They also suggested that the synthesis of DMA from MMA might be more susceptible to inhibition by Se (IV)29 as well as by Hg (II)30,31 compared to the production of MMA from Inorg-As (III). The inhibitory effects of Se and Hg were concentration dependent28-31. \\nThe literature suggests that reduced methylation capacity with increased % MMA (V), decreased % DMA (V), or decreased ratios of % DMA to % MMA in urine is positively associated with various lesions32. Lesions include skin cancer and bladder cancer32. The results were obtained from inorganic arsenic exposed subjects32. Our concern involves the combination of low arsenic (As) and high selenium (Se) ingestion. This can inhibit methylation of arsenic to take it to a toxic level in the tissue. \\nDietary sources of Se and Hg.Global selenium (Se) source are vegetables in the diet. In the United States, meat and bread are the common source. Selenium deficiency in the US is rare. The US Food and Drug Administration (FDA) has found toxic levels of Se in dietary supplements, up to 200 times greater than the amount stated on the label33. The samples contained up to 40,800 ug Se per recommended serving. \\nFor the general population, the most important pathway of exposure to mercury (Hg) is ingestion of methyl mercury in foods. Fish (including tuna, a food commonly eaten by children), other seafood, and marine mammals contain the highest concentrations. The FDA has set a maximum permissible level of 1 ppm of methyl mercury in the seafood34. The people also exposed mercury via amalgams35. \\nProteomic study of Inorg-As (III) injury.Proteomics is a powerful tool developed to enhance the study of complex biological system36. This technique has been extensively employed to investigate the proteome response of cells to drugs and other diseases37, 38. A proteome analysis of the Na-As (III) response in cultured lung cells found in vitro oxidative stress-induced apoptosis39. However, to our knowledge, no in vivo proteomic study of Inorg-As (III) has yet been conducted to improve our understanding of the cellular proteome response to Inorg-As (III) except our preliminary study 40. \\nPreliminary Studies: Results and DiscussionThe existing data (Fig. 1) from our laboratory and others show the complex nature of Inorg-As metabolism. For many years, the major way to study, arsenic (As) metabolism was to measure InorgAs (V), Inorg-As (III), MMA (V), and DMA (V) in urine of people chronically exposed to As in their drinking water. Our investigations demonstrated for the first time that MMA (III) and DMA (III) are found in human urine9. Also we have identified MMA (III) and DMA (III) in the tissues of mice and hamsters exposed to sodium arsenate [Na-As (V)]10, 41. \\nInfluence of Se as well as Hg on the As methyltransferase.We have reported that Se (IV) as well as mercuric chloride (HgCl2) inhibited As (III) methyltransferase and MMA (III) methyltransferase in rabbit liver cytosol. Mercuric chloride was found to be a more potent inhibitor of MMA (III) methyltransferase than As (III) methyltransferase30. These results suggested that Se and Hg decreased arsenic methylation. The inhibitory effects of Se and Hg were concentration dependent30. \\nInfluence of Se and Hg in urine and blood on the percentage of urinary As metabolites.Our human studies indicated that the ratios of the concentrations of Se or Hg to As in urine and blood were positively correlated with % Inorg-As and % MMA (V). But it negatively correlated with % DMA (V) and the ratios of % DMA (V) to % MMA (V) in urine of both males and females (unpublished data) (Table 3). These results confirmed that the inhibitory effects of Se as well as Hg for the methylation of Inorg-As in humans were concentration dependent. We also found that the concentrations of Se and Hg were negatively correlated with % Inorg-As and % MMA (V). Conversely it correlated positively with % DMA (V) and the ratios of % DMA (V) to % MMA (V) in urine of both sexes (unpublished data). These correlations were not statistically significant when urinary concentrations of Se and Hg were adjusted for urinary creatinine (Table 3). Interactions of As, Se, Hg and its relationship with methylation of arsenic are summarized in Figure 2. \\nSex difference distribution of arsenic species in urine.Our results indicate that females have more methylation capacity of arsenic as compared to males. In our human studies (n= 191) in Mexico, we found that females (n= 98) had lower % MMA (p<0.001) and higher % DMA (p=0.006) when compared to males (n= 93) (Fig. 3). The means ratio of % MMA (V) to % Inorg-As and % DMA (V) to %MMA (V) were also lower (p<0.05) and higher (p<0.001), respectively in females compared to males. \\nThe protein expression profiles in the tissues of hamsters exposed to Na-As (III).In our preliminary studies40, hamsters were exposed to Na-As (III) (173 pg/ml as As) in their drinking water for 6 days and control hamsters were given only the water used to make the solutions for the experimental animals. After DIGE (Two-dimensional differential in gel electrophoresis) and analysis by the DeCyder software, several protein spots were found to be over-expressed (red spot) and several were under expressed (green spot) as compared to control (Figs. 4a-c). Three proteins (one was over-expressed and two were under-expressed) of each tissue (liver and urinary bladder) were identified by LC-MS/MS (liquid chromatography-tandem mass spectrometry).DIGE in combination with LC-MS/MS is a powerful tool that may help cancer investigators to understand the molecular mechanisms of cancer progression due to Inorg-As. \\nPropose a new researchThese results suggested that seleni\",\"PeriodicalId\":17507,\"journal\":{\"name\":\"Journal of Toxicology and Environmental Health Sciences\",\"volume\":\"125 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Toxicology and Environmental Health Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55124/jtes.v1i1.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicology and Environmental Health Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55124/jtes.v1i1.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们的研究表明,尿和血中硒或汞对砷的相对浓度与无机砷百分比(%无机砷-As)和一甲基胂酸百分比[% MMA (V)]呈正相关。我们还发现二甲基larsinic酸百分比[% DMA (V)]和% DMA (V)与% MMA (V)的比例呈负相关。在另一项研究中,我们发现在Na-As (III)处理的仓鼠组织中,一组蛋白质显着过表达,而另一组蛋白质则显着过表达。介绍。饮用水中的无机砷(无机砷)。目前最大的公共卫生问题之一是饮用含有已知致癌水平的无机砷的水。全球至少有2亿人因饮用水中的砷而面临死亡风险1-3。长期摄入Inorg-As可导致皮肤癌、膀胱癌、肺癌和其他器官癌1-3。美国饮用水中砷的最大污染水平(MCL)为10微克/升。目前,美国与砷有关的公共健康问题远不及印度、孟加拉国和其他国家。无机砷和砷的代谢和毒性。Inorg-As在体内通过酶交替将五价砷还原为三价形式和从s -腺苷蛋氨酸添加甲基6,7进行代谢;它主要以DMA (V)8的形式随尿液排出。无机砷酸盐[无机砷酸盐(V)]被生物转化为无机砷酸盐(III)、MMA (V)、MMA (III)、DMA (V)和DMA (III)6(图3)。因此,对Inorg-As (V)的毒理学研究至少涉及砷的这六种化学形式。研究报道了人类尿液和动物组织中存在3+氧化态砷生物转化物[MMA (III)和DMA (III)]。MMA (III)和DMA (III)的毒性比其他砷类更大11,12。特别是MMA (III)具有高毒性11,12。尿中MMA升高已被认为与砷中毒有关。此外,尿中MMA百分比小的人砷潴留较少。因此,随着尿液中MMA %的增加,毒性作用的发生率更高,这可能归因于组织中毒性MMA (III)的存在。先前的研究也表明,男性比女性更容易受到与砷相关的皮肤影响13,15。人口在美国的一项研究报告称,女性分泌低% Inorg-As以及% MMA,和更高的%比males16 DMA。缩写:SAM, s -腺苷- l-蛋氨酸;SAHC S-adenosyl-L-homocysteine。砷中毒易感性的差异可能表现在人与人之间砷代谢的差异上。一些因素(例如,遗传因素、性别、暴露时间和剂量、营养和饮食因素等)可能影响Inorg-As、6、17的生物转化,也可能涉及其他未知因素。砷、硒和汞之间的相互作用。一种金属或类金属的毒性可以通过与其他有毒元素和必需元素的相互作用而得到显著调节。砷和汞是有毒元素,而硒是维持身体健康所必需的元素。但是高浓度的硒也是有毒的。最近的报告指出,每天服用200微克硒的人患鳞状细胞癌和非黑色素瘤皮肤癌的风险增加(美国营养预防癌症试验)21。然而,众所周知,As和Se以及Se和Hg作为拮抗剂22。也有报道称,Inorg-As (III)影响亚硒酸盐与甲基汞的相互作用23。Korbas等人(2008)提出了砷、硒和汞之间可能存在的分子联系。兔血中As与Se、Se与Hg、As、Se、Hg相互作用的识别配合物见表1。硒和汞对无机砷代谢的影响。研究报道硒的补充降低了砷引起的毒性25,26。以ug/L表示的尿Se浓度与尿% inog - as呈负相关,与% DMA27呈正相关。该研究没有涉及尿肌酐调整27。其他研究人员认为,Se和Hg降低了As甲基化28-31(表2)。他们还认为,与inorgi -As (III)合成MMA相比,从MMA合成DMA可能更容易受到Se (IV)29和Hg (II)30、31的抑制。Se和Hg的抑制作用是浓度依赖性的28-31。文献表明,甲基化能力的降低与尿液中% MMA (V)的增加、% DMA (V)的减少或% DMA / % MMA比例的降低与各种病变呈正相关32。病变包括皮肤癌和膀胱癌。结果来自无机砷暴露对象。我们关注的是低砷(As)和高硒(Se)摄入的组合。 提出一项新的研究,这些结果表明硒
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Selenium (Se) as well as mercury (Hg) may influence the methylation and toxicity of inorganic arsenic, but further research is needed with combination of Inorg-arsenic, Se, and Hg
Our studies have indicated that the relative concentration of Se or Hg to As in urine and blood positively correlates with percentage of inorganic arsenic (% Inorg-As) and percentage of monomethlyarsonic acid [% MMA (V)]. We also found a negative correlation with percentage of dimethylarsinic acid [% DMA (V)] and the ratio of % DMA (V) to % MMA (V). In another study, we found that a group of proteins were significantly over expressed and conversely other groups were under-expressed in tissues in Na-As (III) treated hamsters. Introduction.Inorganic arsenic (Inorg-As) in drinking water.One of the largest public health problems at present is the drinking of water containing levels of Inorg-As that are known to be carcinogenic. At least 200 million people globally are at risk of dying because of arsenic (As) in their drinking water1-3. The chronic ingestion of Inorg-As can results in skin cancer, bladder cancer, lung cancer, and cancer of other organs1-3. The maximum contamination level (MCL) of U.S. drinking water for arsenic is 10 ug/L. The arsenic related public health problem in the U.S. is not at present anywhere near that of India4, Bangladesh4, and other countries5. Metabolism and toxicity of Inorg-As and arsenic species.Inorg-As is metabolized in the body by alternating reduction of pentavalent arsenic to trivalent form by enzymes and addition of a methyl group from S-adenosylmethionine6, 7; it is excreted mainly in urine as DMA (V)8. Inorganic arsenate [Inorg-As (V)]is biotransformed to Inorg-As (III), MMA (V), MMA (III), DMA (V), and DMA (III)6(Fig. 1). Therefore, the study of the toxicology of Inorg-As (V) involves at least these six chemical forms of arsenic. Studies reported the presence of 3+ oxidation state arsenic biotransformants [MMA (III) and DMA (III)] in human urine9and in animal tissues10. The MMA (III) and DMA (III) are more toxic than other arsenicals11, 12. In particular MMA (III) is highly toxic11, 12. In increased % MMA in urine has been recognized in arsenic toxicity13. In addition, people with a small % MMA in urine show less retention of arsenic14. Thus, the higher prevalence of toxic effects with increased % MMA in urine could be attributed to the presence of toxic MMA (III) in the tissue. Previous studies also indicated that males are more susceptible to the As related skin effects than females13, 15. A study in the U.S population reported that females excreted a lower % Inorg-As as well as % MMA, and a higher % DMA than did males16. Abbreviation: SAM, S-adenosyl-L-methionine; SAHC, S-adenosyl-L-homocysteine. Differences in susceptibility to arsenic toxicity might be manifested by differences in arsenic metabolism among people. Several factors (for examples, genetic factors, sex, duration and dosage of exposure, nutritional and dietary factors, etc.) could be influence for biotransformation of Inorg-As,6, 17 and other unknown factors may also be involved. The interaction between As, Se, and Hg.The toxicity of one metal or metalloid can be dramatically modulated by the interaction with other toxic and essential elements18. Arsenic and Hg are toxic elements, and Se is required to maintain good health19. But Se is also toxic at high levels20. Recent reports point out the increased risk of squamous cell carcinoma and non-melanoma skin cancer in those treated with 200 ug/day of selenium (Nutritional Prevention of Cancer Trial in the United States)21. However, it is well known that As and Se as well as Se and Hg act as antagonists22. It was also reported that Inorg-As (III) influenced the interaction between selenite and methyl mercury23. A possible molecular link between As, Se, and Hg has been proposed by Korbas et al. (2008)24. The identifying complexes between the interaction of As and Se, Se and Hg as well as As, Se, and Hg in blood of rabbit are shown in Table 1. Influence of Se and Hg on the metabolism of Inorg-As.The studies have reported that Se supplementation decreased the As-induced toxicity25, 26. The concentrations of urinary Se expressed as ug/L were negatively correlated with urinary % Inorg-As and positively correlated with % DMA27. The study did not address the urinary creatinine adjustment27. Other researchers suggested that Se and Hg decreased As methylation28-31(Table 2). They also suggested that the synthesis of DMA from MMA might be more susceptible to inhibition by Se (IV)29 as well as by Hg (II)30,31 compared to the production of MMA from Inorg-As (III). The inhibitory effects of Se and Hg were concentration dependent28-31. The literature suggests that reduced methylation capacity with increased % MMA (V), decreased % DMA (V), or decreased ratios of % DMA to % MMA in urine is positively associated with various lesions32. Lesions include skin cancer and bladder cancer32. The results were obtained from inorganic arsenic exposed subjects32. Our concern involves the combination of low arsenic (As) and high selenium (Se) ingestion. This can inhibit methylation of arsenic to take it to a toxic level in the tissue. Dietary sources of Se and Hg.Global selenium (Se) source are vegetables in the diet. In the United States, meat and bread are the common source. Selenium deficiency in the US is rare. The US Food and Drug Administration (FDA) has found toxic levels of Se in dietary supplements, up to 200 times greater than the amount stated on the label33. The samples contained up to 40,800 ug Se per recommended serving. For the general population, the most important pathway of exposure to mercury (Hg) is ingestion of methyl mercury in foods. Fish (including tuna, a food commonly eaten by children), other seafood, and marine mammals contain the highest concentrations. The FDA has set a maximum permissible level of 1 ppm of methyl mercury in the seafood34. The people also exposed mercury via amalgams35. Proteomic study of Inorg-As (III) injury.Proteomics is a powerful tool developed to enhance the study of complex biological system36. This technique has been extensively employed to investigate the proteome response of cells to drugs and other diseases37, 38. A proteome analysis of the Na-As (III) response in cultured lung cells found in vitro oxidative stress-induced apoptosis39. However, to our knowledge, no in vivo proteomic study of Inorg-As (III) has yet been conducted to improve our understanding of the cellular proteome response to Inorg-As (III) except our preliminary study 40. Preliminary Studies: Results and DiscussionThe existing data (Fig. 1) from our laboratory and others show the complex nature of Inorg-As metabolism. For many years, the major way to study, arsenic (As) metabolism was to measure InorgAs (V), Inorg-As (III), MMA (V), and DMA (V) in urine of people chronically exposed to As in their drinking water. Our investigations demonstrated for the first time that MMA (III) and DMA (III) are found in human urine9. Also we have identified MMA (III) and DMA (III) in the tissues of mice and hamsters exposed to sodium arsenate [Na-As (V)]10, 41. Influence of Se as well as Hg on the As methyltransferase.We have reported that Se (IV) as well as mercuric chloride (HgCl2) inhibited As (III) methyltransferase and MMA (III) methyltransferase in rabbit liver cytosol. Mercuric chloride was found to be a more potent inhibitor of MMA (III) methyltransferase than As (III) methyltransferase30. These results suggested that Se and Hg decreased arsenic methylation. The inhibitory effects of Se and Hg were concentration dependent30. Influence of Se and Hg in urine and blood on the percentage of urinary As metabolites.Our human studies indicated that the ratios of the concentrations of Se or Hg to As in urine and blood were positively correlated with % Inorg-As and % MMA (V). But it negatively correlated with % DMA (V) and the ratios of % DMA (V) to % MMA (V) in urine of both males and females (unpublished data) (Table 3). These results confirmed that the inhibitory effects of Se as well as Hg for the methylation of Inorg-As in humans were concentration dependent. We also found that the concentrations of Se and Hg were negatively correlated with % Inorg-As and % MMA (V). Conversely it correlated positively with % DMA (V) and the ratios of % DMA (V) to % MMA (V) in urine of both sexes (unpublished data). These correlations were not statistically significant when urinary concentrations of Se and Hg were adjusted for urinary creatinine (Table 3). Interactions of As, Se, Hg and its relationship with methylation of arsenic are summarized in Figure 2. Sex difference distribution of arsenic species in urine.Our results indicate that females have more methylation capacity of arsenic as compared to males. In our human studies (n= 191) in Mexico, we found that females (n= 98) had lower % MMA (p<0.001) and higher % DMA (p=0.006) when compared to males (n= 93) (Fig. 3). The means ratio of % MMA (V) to % Inorg-As and % DMA (V) to %MMA (V) were also lower (p<0.05) and higher (p<0.001), respectively in females compared to males. The protein expression profiles in the tissues of hamsters exposed to Na-As (III).In our preliminary studies40, hamsters were exposed to Na-As (III) (173 pg/ml as As) in their drinking water for 6 days and control hamsters were given only the water used to make the solutions for the experimental animals. After DIGE (Two-dimensional differential in gel electrophoresis) and analysis by the DeCyder software, several protein spots were found to be over-expressed (red spot) and several were under expressed (green spot) as compared to control (Figs. 4a-c). Three proteins (one was over-expressed and two were under-expressed) of each tissue (liver and urinary bladder) were identified by LC-MS/MS (liquid chromatography-tandem mass spectrometry).DIGE in combination with LC-MS/MS is a powerful tool that may help cancer investigators to understand the molecular mechanisms of cancer progression due to Inorg-As. Propose a new researchThese results suggested that seleni
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
People perceptions about usage of polythene and its impact on environment at Ruwanwella DS division in Sri Lanka Determination of pesticide residue levels in some common food crops: The suitability for human consumption Comparison of nicotine contents in local and imported cigarettes sold in Abidjan markets in Cte dIvoire: Lessons for regulation Acute and subacute toxicity studies of hydroethanolic extract of Baillonella toxisperma Pierre fruit pulp Assessment of Effects of Motivation on Production Operatives in The Nigerian Construction Industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1