{"title":"液体细胞透射电子显微镜揭示硅酸盐水泥水化过程中C-S-H生长机制","authors":"P. Dong, A. Allahverdi, C. Andrei, N. Bassim","doi":"10.2139/ssrn.3940187","DOIUrl":null,"url":null,"abstract":"We report the first application of in-situ liquid cell transmission electron microscopy (LC-TEM) to research hydration reactions of nano OPC, providing nanoscale insight into early reaction mechanisms. We demonstrate that the formation and growth of C-S-H precipitates starts through lateral growth of planar silicate sheets, but soon continues in all directions resulting in a 3D microstructure. Furthermore, nanocrystalline C-S-H structures with sizes between 5 nm to 10 nm were observed inside the amorphous or highly disordered C-S-H matrix, denoting that C-S-H growth is conformed to layered structure model. Crack formation and propagation inside C-S-H precipitates confirms the presence of increasing lattice strain due to growing defects that limits the growth of a fully crystalline structure by buckling and separating the sheets. The rolling up and crumbling of C-S-H sheets promotes the formation of new embryos, leading to the growth of precipitates in all direction and finally their coalescence.","PeriodicalId":7755,"journal":{"name":"AMI: Acta Materialia","volume":"31 4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Liquid Cell Transmission Electron Microscopy Reveals C-S-H Growth Mechanism During Portland Cement Hydration\",\"authors\":\"P. Dong, A. Allahverdi, C. Andrei, N. Bassim\",\"doi\":\"10.2139/ssrn.3940187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report the first application of in-situ liquid cell transmission electron microscopy (LC-TEM) to research hydration reactions of nano OPC, providing nanoscale insight into early reaction mechanisms. We demonstrate that the formation and growth of C-S-H precipitates starts through lateral growth of planar silicate sheets, but soon continues in all directions resulting in a 3D microstructure. Furthermore, nanocrystalline C-S-H structures with sizes between 5 nm to 10 nm were observed inside the amorphous or highly disordered C-S-H matrix, denoting that C-S-H growth is conformed to layered structure model. Crack formation and propagation inside C-S-H precipitates confirms the presence of increasing lattice strain due to growing defects that limits the growth of a fully crystalline structure by buckling and separating the sheets. The rolling up and crumbling of C-S-H sheets promotes the formation of new embryos, leading to the growth of precipitates in all direction and finally their coalescence.\",\"PeriodicalId\":7755,\"journal\":{\"name\":\"AMI: Acta Materialia\",\"volume\":\"31 4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMI: Acta Materialia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3940187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMI: Acta Materialia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3940187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Liquid Cell Transmission Electron Microscopy Reveals C-S-H Growth Mechanism During Portland Cement Hydration
We report the first application of in-situ liquid cell transmission electron microscopy (LC-TEM) to research hydration reactions of nano OPC, providing nanoscale insight into early reaction mechanisms. We demonstrate that the formation and growth of C-S-H precipitates starts through lateral growth of planar silicate sheets, but soon continues in all directions resulting in a 3D microstructure. Furthermore, nanocrystalline C-S-H structures with sizes between 5 nm to 10 nm were observed inside the amorphous or highly disordered C-S-H matrix, denoting that C-S-H growth is conformed to layered structure model. Crack formation and propagation inside C-S-H precipitates confirms the presence of increasing lattice strain due to growing defects that limits the growth of a fully crystalline structure by buckling and separating the sheets. The rolling up and crumbling of C-S-H sheets promotes the formation of new embryos, leading to the growth of precipitates in all direction and finally their coalescence.