基于分段线性预测的动态配置预取

A. Lifa, P. Eles, Zebo Peng
{"title":"基于分段线性预测的动态配置预取","authors":"A. Lifa, P. Eles, Zebo Peng","doi":"10.7873/DATE.2013.173","DOIUrl":null,"url":null,"abstract":"Modern systems demand high performance, as well as high degrees of flexibility and adaptability. Many current applications exhibit a dynamic and nonstationary behavior, having certain characteristics in one phase of their execution, that will change as the applications enter new phases, in a manner unpredictable at design-time. In order to meet the performance requirements of such systems, it is important to have on-line optimization algorithms, coupled with adaptive hardware platforms, that together can adjust to the run-time conditions. We propose an optimization technique that minimizes the expected execution time of an application by dynamically scheduling hardware prefetches. We use a piecewise linear predictor in order to capture correlations and predict the hardware modules to be reached. Experiments show that the proposed algorithm outperforms the previous state-of-art in reducing the expected execution time by up to 27% on average.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"30 1","pages":"815-820"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Dynamic configuration prefetching based on piecewise linear prediction\",\"authors\":\"A. Lifa, P. Eles, Zebo Peng\",\"doi\":\"10.7873/DATE.2013.173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern systems demand high performance, as well as high degrees of flexibility and adaptability. Many current applications exhibit a dynamic and nonstationary behavior, having certain characteristics in one phase of their execution, that will change as the applications enter new phases, in a manner unpredictable at design-time. In order to meet the performance requirements of such systems, it is important to have on-line optimization algorithms, coupled with adaptive hardware platforms, that together can adjust to the run-time conditions. We propose an optimization technique that minimizes the expected execution time of an application by dynamically scheduling hardware prefetches. We use a piecewise linear predictor in order to capture correlations and predict the hardware modules to be reached. Experiments show that the proposed algorithm outperforms the previous state-of-art in reducing the expected execution time by up to 27% on average.\",\"PeriodicalId\":6310,\"journal\":{\"name\":\"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"30 1\",\"pages\":\"815-820\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7873/DATE.2013.173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2013.173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

现代系统要求高性能,以及高度的灵活性和适应性。许多当前的应用程序表现出动态和非平稳的行为,在其执行的一个阶段具有某些特征,随着应用程序进入新阶段,这些特征将以设计时不可预测的方式发生变化。为了满足此类系统的性能要求,重要的是要有在线优化算法,并结合自适应硬件平台,共同适应运行时条件。我们提出了一种优化技术,通过动态调度硬件预取来最小化应用程序的预期执行时间。我们使用分段线性预测器来捕获相关性并预测要达到的硬件模块。实验表明,该算法的预期执行时间平均减少27%,优于现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic configuration prefetching based on piecewise linear prediction
Modern systems demand high performance, as well as high degrees of flexibility and adaptability. Many current applications exhibit a dynamic and nonstationary behavior, having certain characteristics in one phase of their execution, that will change as the applications enter new phases, in a manner unpredictable at design-time. In order to meet the performance requirements of such systems, it is important to have on-line optimization algorithms, coupled with adaptive hardware platforms, that together can adjust to the run-time conditions. We propose an optimization technique that minimizes the expected execution time of an application by dynamically scheduling hardware prefetches. We use a piecewise linear predictor in order to capture correlations and predict the hardware modules to be reached. Experiments show that the proposed algorithm outperforms the previous state-of-art in reducing the expected execution time by up to 27% on average.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An enhanced double-TSV scheme for defect tolerance in 3D-IC A sub-µA power management circuit in 0.18µm CMOS for energy harvesters Variation-tolerant OpenMP tasking on tightly-coupled processor clusters Sufficient real-time analysis for an engine control unit with constant angular velocities A Critical-Section-Level timing synchronization approach for deterministic multi-core instruction-set simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1