使用Blender生成光场结构光投影数据

Xinjun Zhu, Zhizhi Zhang, Linpeng Hou, Limei Song, Hongyi Wang
{"title":"使用Blender生成光场结构光投影数据","authors":"Xinjun Zhu, Zhizhi Zhang, Linpeng Hou, Limei Song, Hongyi Wang","doi":"10.1109/cvidliccea56201.2022.9824921","DOIUrl":null,"url":null,"abstract":"Light field structured light 3D measurement has gained popularity by merging the advantages of light field and structured light methods. Generating light field structured light dataset is necessary for studying light field 3D reconstruction algorithms, but it is time-consuming and expensive in a real sense, especially for ground truth data. This paper proposes a method to generate light field structured light projection data with Blender simulation. The proposed method allows for the modification of camera and projector settings and parameters, as well as rotating objects. The dataset generated by this method contains 107730 light field structured light images. The label data (ground truth data) including depth and disparity by the 9×9 light field camera array are provided for the performance evaluation of 3D reconstruction algorithms. To the best of our knowledge, it is the first public dataset in the light field structured light projection environment. Diverse 3D reconstruction methods, including deep learning methods, are used to evaluate the proposed data generation method and dataset. The dataset is available at https://github.com/sabaizzz/Light-field-structured-light-dataset.","PeriodicalId":23649,"journal":{"name":"Vision","volume":"14 1","pages":"1249-1253"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Light field structured light projection data generation with Blender\",\"authors\":\"Xinjun Zhu, Zhizhi Zhang, Linpeng Hou, Limei Song, Hongyi Wang\",\"doi\":\"10.1109/cvidliccea56201.2022.9824921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Light field structured light 3D measurement has gained popularity by merging the advantages of light field and structured light methods. Generating light field structured light dataset is necessary for studying light field 3D reconstruction algorithms, but it is time-consuming and expensive in a real sense, especially for ground truth data. This paper proposes a method to generate light field structured light projection data with Blender simulation. The proposed method allows for the modification of camera and projector settings and parameters, as well as rotating objects. The dataset generated by this method contains 107730 light field structured light images. The label data (ground truth data) including depth and disparity by the 9×9 light field camera array are provided for the performance evaluation of 3D reconstruction algorithms. To the best of our knowledge, it is the first public dataset in the light field structured light projection environment. Diverse 3D reconstruction methods, including deep learning methods, are used to evaluate the proposed data generation method and dataset. The dataset is available at https://github.com/sabaizzz/Light-field-structured-light-dataset.\",\"PeriodicalId\":23649,\"journal\":{\"name\":\"Vision\",\"volume\":\"14 1\",\"pages\":\"1249-1253\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/cvidliccea56201.2022.9824921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvidliccea56201.2022.9824921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

光场结构光三维测量融合了光场和结构光两种方法的优点,得到了广泛的应用。生成光场结构光数据集是研究光场三维重建算法的必要条件,但实际意义上的光场结构光数据集既耗时又昂贵,特别是对于地真数据集更是如此。本文提出了一种利用Blender模拟生成光场结构光投影数据的方法。所提出的方法允许修改相机和投影仪的设置和参数,以及旋转对象。该方法生成的数据集包含107730张光场结构光图像。通过9×9光场相机阵列提供包含深度和视差的标签数据(ground truth data),用于三维重建算法的性能评估。据我们所知,这是光场结构光投影环境中的第一个公开数据集。不同的三维重建方法,包括深度学习方法,被用来评估提出的数据生成方法和数据集。该数据集可在https://github.com/sabaizzz/Light-field-structured-light-dataset上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Light field structured light projection data generation with Blender
Light field structured light 3D measurement has gained popularity by merging the advantages of light field and structured light methods. Generating light field structured light dataset is necessary for studying light field 3D reconstruction algorithms, but it is time-consuming and expensive in a real sense, especially for ground truth data. This paper proposes a method to generate light field structured light projection data with Blender simulation. The proposed method allows for the modification of camera and projector settings and parameters, as well as rotating objects. The dataset generated by this method contains 107730 light field structured light images. The label data (ground truth data) including depth and disparity by the 9×9 light field camera array are provided for the performance evaluation of 3D reconstruction algorithms. To the best of our knowledge, it is the first public dataset in the light field structured light projection environment. Diverse 3D reconstruction methods, including deep learning methods, are used to evaluate the proposed data generation method and dataset. The dataset is available at https://github.com/sabaizzz/Light-field-structured-light-dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Eye Axial Length Measurements Taken Using Partial Coherence Interferometry and OCT Biometry The Effect of the Zonular Fiber Angle of Insertion on Accommodation Perceptual Biases in the Interpretation of Non-Rigid Shape Transformations from Motion A New Model of a Macular Buckle and a Refined Surgical Technique for the Treatment of Myopic Traction Maculopathy Eyes on Memory: Pupillometry in Encoding and Retrieval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1