基于视觉反馈的无创脑机接口有效运动意象训练

Sungho Jo, Jin Woo Choi
{"title":"基于视觉反馈的无创脑机接口有效运动意象训练","authors":"Sungho Jo, Jin Woo Choi","doi":"10.1109/IWW-BCI.2018.8311524","DOIUrl":null,"url":null,"abstract":"In this study, we propose an effective training method for 2-class motor imagery tasks on brain computer interface (BCI) systems viable even for distracting environments. For non-invasive BCIs, it is difficult to capture event-related desynchronization (ERD) and event-related synchronization (ERS) signals through electroencephalogram (EEG) in places where it is difficult for subjects to concentrate. To improve concentration under a distracting environment, our proposed training method implemented a graphical interface as a source of visual feedback. The performance of the implemented training method is evaluated by comparing its results with those of a training method that does not support visual feedback. The experiments are held while a variety of noises are produced to simulate a distracting environment. The results of the experiment demonstrate the effectiveness of the proposed training method in distracting environments for 2-class motor imagery tasks.","PeriodicalId":6537,"journal":{"name":"2018 6th International Conference on Brain-Computer Interface (BCI)","volume":"26 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Effective motor imagery training with visual feedback for non-invasive brain computer interface\",\"authors\":\"Sungho Jo, Jin Woo Choi\",\"doi\":\"10.1109/IWW-BCI.2018.8311524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we propose an effective training method for 2-class motor imagery tasks on brain computer interface (BCI) systems viable even for distracting environments. For non-invasive BCIs, it is difficult to capture event-related desynchronization (ERD) and event-related synchronization (ERS) signals through electroencephalogram (EEG) in places where it is difficult for subjects to concentrate. To improve concentration under a distracting environment, our proposed training method implemented a graphical interface as a source of visual feedback. The performance of the implemented training method is evaluated by comparing its results with those of a training method that does not support visual feedback. The experiments are held while a variety of noises are produced to simulate a distracting environment. The results of the experiment demonstrate the effectiveness of the proposed training method in distracting environments for 2-class motor imagery tasks.\",\"PeriodicalId\":6537,\"journal\":{\"name\":\"2018 6th International Conference on Brain-Computer Interface (BCI)\",\"volume\":\"26 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 6th International Conference on Brain-Computer Interface (BCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWW-BCI.2018.8311524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2018.8311524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在本研究中,我们提出了一种在脑机接口(BCI)系统上有效训练2类运动图像任务的方法,即使在分散注意力的环境下也是可行的。对于非侵入性脑机接口,在受试者难以集中注意力的部位,难以通过脑电图(EEG)捕捉到事件相关去同步(ERD)和事件相关同步(ERS)信号。为了在分散注意力的环境下提高注意力,我们提出的训练方法实现了一个图形界面作为视觉反馈的来源。通过将所实现的训练方法的结果与不支持视觉反馈的训练方法的结果进行比较来评估其性能。实验进行时,会产生各种各样的噪音来模拟一个分散注意力的环境。实验结果表明,所提出的训练方法在分心环境下对2类运动意象任务的训练是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effective motor imagery training with visual feedback for non-invasive brain computer interface
In this study, we propose an effective training method for 2-class motor imagery tasks on brain computer interface (BCI) systems viable even for distracting environments. For non-invasive BCIs, it is difficult to capture event-related desynchronization (ERD) and event-related synchronization (ERS) signals through electroencephalogram (EEG) in places where it is difficult for subjects to concentrate. To improve concentration under a distracting environment, our proposed training method implemented a graphical interface as a source of visual feedback. The performance of the implemented training method is evaluated by comparing its results with those of a training method that does not support visual feedback. The experiments are held while a variety of noises are produced to simulate a distracting environment. The results of the experiment demonstrate the effectiveness of the proposed training method in distracting environments for 2-class motor imagery tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Embodied cognition Design of a brain-controlled robot arm system based on upper-limb movement imagery Applying deep-learning to a top-down SSVEP BMI BCI classification using locally generated CSP features Evaluation of outlier prevalence of density distribution in brain computed tomography: Comparison of kurtosis and quartile statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1