{"title":"基于正常绝缘体-超导隧道结的100毫开尔文电子制冷机的研制","authors":"Philip A. Fisher, Joel N. Ullom , Michael Nahum","doi":"10.1016/S0964-1807(98)00072-6","DOIUrl":null,"url":null,"abstract":"<div><p><span>We report recent progress on an all-electronic, on-chip, 100 mK refrigerator. This refrigerator utilizes the unique thermal transport properties of a normal-insulator-superconductor (NIS) tunnel junction to preferentially remove electrons whose energy is higher than the Fermi energy from the normal electrode, and thus, to lower the temperature of electrons in the normal electrode. We present the first measurements demonstrating electron cooling in a device having a substantially larger area (∼10</span><sup>4</sup> <em>μ</em>m<sup>2</sup><span>) than typical submicron-scale devices demonstrated previously. The performance of this refrigerator is analyzed by a simple thermal model that includes energy transport through the junction, thermal loading from the environment, recombination of quasiparticles in the superconductor electrode, and non-ideal junction characteristics.</span></p></div>","PeriodicalId":100110,"journal":{"name":"Applied Superconductivity","volume":"6 7","pages":"Pages 325-329"},"PeriodicalIF":0.0000,"publicationDate":"1998-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0964-1807(98)00072-6","citationCount":"3","resultStr":"{\"title\":\"Development of a 100 milli-kelvin electronic refrigerator based on a normal-insulator-superconductor tunnel junction\",\"authors\":\"Philip A. Fisher, Joel N. Ullom , Michael Nahum\",\"doi\":\"10.1016/S0964-1807(98)00072-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We report recent progress on an all-electronic, on-chip, 100 mK refrigerator. This refrigerator utilizes the unique thermal transport properties of a normal-insulator-superconductor (NIS) tunnel junction to preferentially remove electrons whose energy is higher than the Fermi energy from the normal electrode, and thus, to lower the temperature of electrons in the normal electrode. We present the first measurements demonstrating electron cooling in a device having a substantially larger area (∼10</span><sup>4</sup> <em>μ</em>m<sup>2</sup><span>) than typical submicron-scale devices demonstrated previously. The performance of this refrigerator is analyzed by a simple thermal model that includes energy transport through the junction, thermal loading from the environment, recombination of quasiparticles in the superconductor electrode, and non-ideal junction characteristics.</span></p></div>\",\"PeriodicalId\":100110,\"journal\":{\"name\":\"Applied Superconductivity\",\"volume\":\"6 7\",\"pages\":\"Pages 325-329\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0964-1807(98)00072-6\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Superconductivity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0964180798000726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964180798000726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of a 100 milli-kelvin electronic refrigerator based on a normal-insulator-superconductor tunnel junction
We report recent progress on an all-electronic, on-chip, 100 mK refrigerator. This refrigerator utilizes the unique thermal transport properties of a normal-insulator-superconductor (NIS) tunnel junction to preferentially remove electrons whose energy is higher than the Fermi energy from the normal electrode, and thus, to lower the temperature of electrons in the normal electrode. We present the first measurements demonstrating electron cooling in a device having a substantially larger area (∼104μm2) than typical submicron-scale devices demonstrated previously. The performance of this refrigerator is analyzed by a simple thermal model that includes energy transport through the junction, thermal loading from the environment, recombination of quasiparticles in the superconductor electrode, and non-ideal junction characteristics.