{"title":"输水管道瞬态流动的三维CFD模拟与分析","authors":"Yun Cao, Ling Zhou, C. Ou, Haoyu Fang, Deyou Liu","doi":"10.2166/aqua.2022.023","DOIUrl":null,"url":null,"abstract":"\n A three-dimensional (3D) computational fluid dynamics (CFD) approach is developed to elaborate the water-hammer pipe flow and 3D detailed dynamic characteristics of a closing ball valve. The proposed CFD approach considers the water compressibility and the viscous sublayer, which are sometimes neglected in previous studies. Comparisons of the CFD results, the measured pressures and the one-dimensional results, demonstrate that the current 3D CFD approach better reproduces the experimental pressure oscillations while helping to visualize the associated physical processes and to further explore the 3D transient characteristics. The mean velocity distributions in the radial direction significantly change as the pipe transient progresses, which is closely associated with transient shear stress. Mean velocity variations at the valve during the closing process undergo three distinct stages: slight change, then drastic reduction, and finally slowing down. Head loss coefficient and discharge coefficient of the valve change as the valve closing time shortens.","PeriodicalId":17666,"journal":{"name":"Journal of Water Supply: Research and Technology-Aqua","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"3D CFD simulation and analysis of transient flow in a water pipeline\",\"authors\":\"Yun Cao, Ling Zhou, C. Ou, Haoyu Fang, Deyou Liu\",\"doi\":\"10.2166/aqua.2022.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A three-dimensional (3D) computational fluid dynamics (CFD) approach is developed to elaborate the water-hammer pipe flow and 3D detailed dynamic characteristics of a closing ball valve. The proposed CFD approach considers the water compressibility and the viscous sublayer, which are sometimes neglected in previous studies. Comparisons of the CFD results, the measured pressures and the one-dimensional results, demonstrate that the current 3D CFD approach better reproduces the experimental pressure oscillations while helping to visualize the associated physical processes and to further explore the 3D transient characteristics. The mean velocity distributions in the radial direction significantly change as the pipe transient progresses, which is closely associated with transient shear stress. Mean velocity variations at the valve during the closing process undergo three distinct stages: slight change, then drastic reduction, and finally slowing down. Head loss coefficient and discharge coefficient of the valve change as the valve closing time shortens.\",\"PeriodicalId\":17666,\"journal\":{\"name\":\"Journal of Water Supply: Research and Technology-Aqua\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Supply: Research and Technology-Aqua\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/aqua.2022.023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Supply: Research and Technology-Aqua","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/aqua.2022.023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3D CFD simulation and analysis of transient flow in a water pipeline
A three-dimensional (3D) computational fluid dynamics (CFD) approach is developed to elaborate the water-hammer pipe flow and 3D detailed dynamic characteristics of a closing ball valve. The proposed CFD approach considers the water compressibility and the viscous sublayer, which are sometimes neglected in previous studies. Comparisons of the CFD results, the measured pressures and the one-dimensional results, demonstrate that the current 3D CFD approach better reproduces the experimental pressure oscillations while helping to visualize the associated physical processes and to further explore the 3D transient characteristics. The mean velocity distributions in the radial direction significantly change as the pipe transient progresses, which is closely associated with transient shear stress. Mean velocity variations at the valve during the closing process undergo three distinct stages: slight change, then drastic reduction, and finally slowing down. Head loss coefficient and discharge coefficient of the valve change as the valve closing time shortens.