高阶稳态扩散近似

IF 0.7 4区 管理学 Q3 Engineering Military Operations Research Pub Date : 2020-12-04 DOI:10.1287/opre.2022.2362
Anton Braverman, Jim Dai, Xiao Fang
{"title":"高阶稳态扩散近似","authors":"Anton Braverman, Jim Dai, Xiao Fang","doi":"10.1287/opre.2022.2362","DOIUrl":null,"url":null,"abstract":"Much like higher-order Taylor expansions allow one to approximate functions to a higher degree of accuracy, we demonstrate that, by accounting for higher-order terms in the Taylor expansion of a Markov process generator, one can derive novel diffusion approximations that achieve a higher degree of accuracy compared with the classical ones used in the literature over the last 50 years.","PeriodicalId":49809,"journal":{"name":"Military Operations Research","volume":"6 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"High-Order Steady-State Diffusion Approximations\",\"authors\":\"Anton Braverman, Jim Dai, Xiao Fang\",\"doi\":\"10.1287/opre.2022.2362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Much like higher-order Taylor expansions allow one to approximate functions to a higher degree of accuracy, we demonstrate that, by accounting for higher-order terms in the Taylor expansion of a Markov process generator, one can derive novel diffusion approximations that achieve a higher degree of accuracy compared with the classical ones used in the literature over the last 50 years.\",\"PeriodicalId\":49809,\"journal\":{\"name\":\"Military Operations Research\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Military Operations Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1287/opre.2022.2362\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Military Operations Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/opre.2022.2362","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 9

摘要

就像高阶泰勒展开式允许人们以更高的精度近似函数一样,我们证明,通过在马尔可夫过程生成器的泰勒展开式中考虑高阶项,可以推导出与过去50年来文献中使用的经典扩散近似相比具有更高精度的新型扩散近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-Order Steady-State Diffusion Approximations
Much like higher-order Taylor expansions allow one to approximate functions to a higher degree of accuracy, we demonstrate that, by accounting for higher-order terms in the Taylor expansion of a Markov process generator, one can derive novel diffusion approximations that achieve a higher degree of accuracy compared with the classical ones used in the literature over the last 50 years.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Military Operations Research
Military Operations Research 管理科学-运筹学与管理科学
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Military Operations Research is a peer-reviewed journal of high academic quality. The Journal publishes articles that describe operations research (OR) methodologies and theories used in key military and national security applications. Of particular interest are papers that present: Case studies showing innovative OR applications Apply OR to major policy issues Introduce interesting new problems areas Highlight education issues Document the history of military and national security OR.
期刊最新文献
Optimal Routing Under Demand Surges: The Value of Future Arrival Rates Demand Estimation Under Uncertain Consideration Sets Optimal Routing to Parallel Servers in Heavy Traffic The When and How of Delegated Search A Data-Driven Approach to Beating SAA Out of Sample
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1