Umme Jouvairiya, Mehar Fatima Alvi, Soban Ahmad Faridi, K. Osama, A. Vimal
{"title":"氧化铁纳米颗粒(IONPs)对细菌细胞的影响","authors":"Umme Jouvairiya, Mehar Fatima Alvi, Soban Ahmad Faridi, K. Osama, A. Vimal","doi":"10.2174/2210681212666220822123017","DOIUrl":null,"url":null,"abstract":"\n\nNanoparticles have a wide range of responsive reactions in bacterial cells depending on their characteristics. They interact with organisms at a cellular level and are capable of producing unexpected reactions depending on their own and cell’s morphological features. Some functions provide betterment of cells and some cause disruptions in the cell functioning or exhibit toxicity for them. Nanoparticles, depending on their toxicity, can also cause alterations in cellular physiology. Different nanoparticles affect different biological species in different ways. As a result, a comprehensive investigation is necessary for all types of nanoparticles to demonstrate their beneficial and harmful effects on various species in terms of growth, inhibition, toxicity, and death. In this review, we have only focused on the iron nanoparticle and their effects on the bacterial cells as they are the most commonly used nanoparticle in biology and microbiology because of their unique physicochemical properties (size, shape, stability, etc.). These properties of NPs allow them to react with the bacterial cell surfaces and create a response (which can either support the growth of the bacteria or cause an anti-bacterial or anti-microbial effect on them). These properties are also changeable if we alter the morphological features of the NPs. Studies have shown improvement of microbiological reaction rates by using magnetic nanoparticles. However, nanoparticle toxicity is the major area of concern, as it can decrease therapeutic efficiency and cause adverse effects. Considering the wide range of responses and their reasons, this review summarizes the effects an iron oxide nanoparticle can have on the bacterial cell in general, the factors that influence those effects, and the relation of NP's characteristics to their significant differences in effects on bacteria.\n","PeriodicalId":38913,"journal":{"name":"Nanoscience and Nanotechnology - Asia","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Varying Effects Of Iron Oxide Nanoparticles (IONPs) On The Bacterial Cells\",\"authors\":\"Umme Jouvairiya, Mehar Fatima Alvi, Soban Ahmad Faridi, K. Osama, A. Vimal\",\"doi\":\"10.2174/2210681212666220822123017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nNanoparticles have a wide range of responsive reactions in bacterial cells depending on their characteristics. They interact with organisms at a cellular level and are capable of producing unexpected reactions depending on their own and cell’s morphological features. Some functions provide betterment of cells and some cause disruptions in the cell functioning or exhibit toxicity for them. Nanoparticles, depending on their toxicity, can also cause alterations in cellular physiology. Different nanoparticles affect different biological species in different ways. As a result, a comprehensive investigation is necessary for all types of nanoparticles to demonstrate their beneficial and harmful effects on various species in terms of growth, inhibition, toxicity, and death. In this review, we have only focused on the iron nanoparticle and their effects on the bacterial cells as they are the most commonly used nanoparticle in biology and microbiology because of their unique physicochemical properties (size, shape, stability, etc.). These properties of NPs allow them to react with the bacterial cell surfaces and create a response (which can either support the growth of the bacteria or cause an anti-bacterial or anti-microbial effect on them). These properties are also changeable if we alter the morphological features of the NPs. Studies have shown improvement of microbiological reaction rates by using magnetic nanoparticles. However, nanoparticle toxicity is the major area of concern, as it can decrease therapeutic efficiency and cause adverse effects. Considering the wide range of responses and their reasons, this review summarizes the effects an iron oxide nanoparticle can have on the bacterial cell in general, the factors that influence those effects, and the relation of NP's characteristics to their significant differences in effects on bacteria.\\n\",\"PeriodicalId\":38913,\"journal\":{\"name\":\"Nanoscience and Nanotechnology - Asia\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscience and Nanotechnology - Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2210681212666220822123017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscience and Nanotechnology - Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2210681212666220822123017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Varying Effects Of Iron Oxide Nanoparticles (IONPs) On The Bacterial Cells
Nanoparticles have a wide range of responsive reactions in bacterial cells depending on their characteristics. They interact with organisms at a cellular level and are capable of producing unexpected reactions depending on their own and cell’s morphological features. Some functions provide betterment of cells and some cause disruptions in the cell functioning or exhibit toxicity for them. Nanoparticles, depending on their toxicity, can also cause alterations in cellular physiology. Different nanoparticles affect different biological species in different ways. As a result, a comprehensive investigation is necessary for all types of nanoparticles to demonstrate their beneficial and harmful effects on various species in terms of growth, inhibition, toxicity, and death. In this review, we have only focused on the iron nanoparticle and their effects on the bacterial cells as they are the most commonly used nanoparticle in biology and microbiology because of their unique physicochemical properties (size, shape, stability, etc.). These properties of NPs allow them to react with the bacterial cell surfaces and create a response (which can either support the growth of the bacteria or cause an anti-bacterial or anti-microbial effect on them). These properties are also changeable if we alter the morphological features of the NPs. Studies have shown improvement of microbiological reaction rates by using magnetic nanoparticles. However, nanoparticle toxicity is the major area of concern, as it can decrease therapeutic efficiency and cause adverse effects. Considering the wide range of responses and their reasons, this review summarizes the effects an iron oxide nanoparticle can have on the bacterial cell in general, the factors that influence those effects, and the relation of NP's characteristics to their significant differences in effects on bacteria.
期刊介绍:
Nanoscience & Nanotechnology-Asia publishes expert reviews, original research articles, letters and guest edited issues on all the most recent advances in nanoscience and nanotechnology with an emphasis on research in Asia and Japan. All aspects of the field are represented including chemistry, physics, materials science, biology and engineering mainly covering the following; synthesis, characterization, assembly, theory, and simulation of nanostructures (nanomaterials and assemblies, nanodevices, nano-bubbles, nano-droplets, nanofluidics, and self-assembled structures), nanofabrication, nanobiotechnology, nanomedicine and methods and tools for nanoscience and nanotechnology.