{"title":"动态图回归的次抽样随机Hadamard变换","authors":"M. H. Chehreghani","doi":"10.1145/3340531.3412158","DOIUrl":null,"url":null,"abstract":"A well-known problem in data science and machine learning is linear regression, which is recently extended to dynamic graphs. Existing exact algorithms for updating solutions of dynamic graph regression require at least a linear time (in terms of n: the number of nodes of the graph). However, this time complexity might be intractable in practice. In this paper, we utilize subsampled randomized Hadamard transform to propose a randomized algorithm for dynamic graphs. Suppose that we are given an nxm matrix embedding M of the graph, where m ⇐ n. Let r be the number of samples required for a guaranteed approximation error, which is a sublinear function of n. After an edge insertion or an edge deletion in the graph, our algorithm updates the approximate solution in O(rm) time.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"10 1","pages":"2045-2048"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Subsampled Randomized Hadamard Transform for Regression of Dynamic Graphs\",\"authors\":\"M. H. Chehreghani\",\"doi\":\"10.1145/3340531.3412158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A well-known problem in data science and machine learning is linear regression, which is recently extended to dynamic graphs. Existing exact algorithms for updating solutions of dynamic graph regression require at least a linear time (in terms of n: the number of nodes of the graph). However, this time complexity might be intractable in practice. In this paper, we utilize subsampled randomized Hadamard transform to propose a randomized algorithm for dynamic graphs. Suppose that we are given an nxm matrix embedding M of the graph, where m ⇐ n. Let r be the number of samples required for a guaranteed approximation error, which is a sublinear function of n. After an edge insertion or an edge deletion in the graph, our algorithm updates the approximate solution in O(rm) time.\",\"PeriodicalId\":74507,\"journal\":{\"name\":\"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management\",\"volume\":\"10 1\",\"pages\":\"2045-2048\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3340531.3412158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3340531.3412158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Subsampled Randomized Hadamard Transform for Regression of Dynamic Graphs
A well-known problem in data science and machine learning is linear regression, which is recently extended to dynamic graphs. Existing exact algorithms for updating solutions of dynamic graph regression require at least a linear time (in terms of n: the number of nodes of the graph). However, this time complexity might be intractable in practice. In this paper, we utilize subsampled randomized Hadamard transform to propose a randomized algorithm for dynamic graphs. Suppose that we are given an nxm matrix embedding M of the graph, where m ⇐ n. Let r be the number of samples required for a guaranteed approximation error, which is a sublinear function of n. After an edge insertion or an edge deletion in the graph, our algorithm updates the approximate solution in O(rm) time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enabling Health Data Sharing with Fine-Grained Privacy. MedCV: An Interactive Visualization System for Patient Cohort Identification from Medical Claim Data. PubMed Author-assigned Keyword Extraction (PubMedAKE) Benchmark. From Product Searches to Conversational Agents for E-Commerce Non-Visual Accessibility Assessment of Videos.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1