利用神经网络反演水瓶座海面盐度

Y. Soldo, D. Vine, E. Dinnat
{"title":"利用神经网络反演水瓶座海面盐度","authors":"Y. Soldo, D. Vine, E. Dinnat","doi":"10.1109/IGARSS.2019.8898959","DOIUrl":null,"url":null,"abstract":"Even though the Sea Surface Salinity (SSS) retrieved from Aquarius are generally very close to in-situ measurements, the level of similarity varies with the region and with the circumstances of the observations (wind speed, sea surface temperature, etc.). SSS is currently retrieved from the brightness temperatures measured by Aquarius and applying the current theoretical model for the propagation and emission of the natural thermal radiation. In this contribution we consider an alternative retrieval approach based on a Neural Network (NN) with the goal of improving the subsets of Aquarius SSS data that are in poorer agreement with in-situ measurements. The subset considered here are the SSS retrieved at latitudes higher than 30˚. The output of the NN approach are compared against in-situ measurements using four statistical metrics (correlation coefficient, bias, RMSD and 5% trimmed range). The output of the NN and the nominal Aquarius SSS are compared against SSS values from in-situ measurements and from ocean models. From these comparisons it appears that the output of the NN matches the in-situ measurements better than the nominal Aquarius SSS.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"1 1","pages":"8143-8146"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sea Surface Salinity Retrievals from Aquarius Using Neural Networks\",\"authors\":\"Y. Soldo, D. Vine, E. Dinnat\",\"doi\":\"10.1109/IGARSS.2019.8898959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Even though the Sea Surface Salinity (SSS) retrieved from Aquarius are generally very close to in-situ measurements, the level of similarity varies with the region and with the circumstances of the observations (wind speed, sea surface temperature, etc.). SSS is currently retrieved from the brightness temperatures measured by Aquarius and applying the current theoretical model for the propagation and emission of the natural thermal radiation. In this contribution we consider an alternative retrieval approach based on a Neural Network (NN) with the goal of improving the subsets of Aquarius SSS data that are in poorer agreement with in-situ measurements. The subset considered here are the SSS retrieved at latitudes higher than 30˚. The output of the NN approach are compared against in-situ measurements using four statistical metrics (correlation coefficient, bias, RMSD and 5% trimmed range). The output of the NN and the nominal Aquarius SSS are compared against SSS values from in-situ measurements and from ocean models. From these comparisons it appears that the output of the NN matches the in-situ measurements better than the nominal Aquarius SSS.\",\"PeriodicalId\":13262,\"journal\":{\"name\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"1 1\",\"pages\":\"8143-8146\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2019.8898959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8898959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

尽管从Aquarius获取的海面盐度(SSS)通常与现场测量值非常接近,但相似程度因地区和观测环境(风速,海面温度等)而异。SSS目前是从宝瓶号测量的亮度温度中获取的,并应用了当前自然热辐射传播和发射的理论模型。在这篇文章中,我们考虑了一种基于神经网络(NN)的替代检索方法,目的是改进Aquarius SSS数据的子集,这些子集与原位测量结果的一致性较差。这里考虑的子集是在纬度高于30˚的地区检索到的SSS。使用四个统计指标(相关系数、偏差、RMSD和5%修剪范围)将神经网络方法的输出与现场测量进行比较。将神经网络和标称Aquarius SSS的输出与现场测量和海洋模型的SSS值进行比较。从这些比较中可以看出,神经网络的输出比名义上的水瓶座SSS更符合现场测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sea Surface Salinity Retrievals from Aquarius Using Neural Networks
Even though the Sea Surface Salinity (SSS) retrieved from Aquarius are generally very close to in-situ measurements, the level of similarity varies with the region and with the circumstances of the observations (wind speed, sea surface temperature, etc.). SSS is currently retrieved from the brightness temperatures measured by Aquarius and applying the current theoretical model for the propagation and emission of the natural thermal radiation. In this contribution we consider an alternative retrieval approach based on a Neural Network (NN) with the goal of improving the subsets of Aquarius SSS data that are in poorer agreement with in-situ measurements. The subset considered here are the SSS retrieved at latitudes higher than 30˚. The output of the NN approach are compared against in-situ measurements using four statistical metrics (correlation coefficient, bias, RMSD and 5% trimmed range). The output of the NN and the nominal Aquarius SSS are compared against SSS values from in-situ measurements and from ocean models. From these comparisons it appears that the output of the NN matches the in-situ measurements better than the nominal Aquarius SSS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Question Answering From Remote Sensing Images The Impact of Additive Noise on Polarimetric Radarsat-2 Data Covering Oil Slicks Edge-Convolution Point Net for Semantic Segmentation of Large-Scale Point Clouds Burn Severity Estimation in Northern Australia Tropical Savannas Using Radiative Transfer Model and Sentinel-2 Data The Truth About Ground Truth: Label Noise in Human-Generated Reference Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1