税务vis:一种发现逃税集团的视觉系统

Hongchao Yu, Huan He, Q. Zheng, Bo Dong
{"title":"税务vis:一种发现逃税集团的视觉系统","authors":"Hongchao Yu, Huan He, Q. Zheng, Bo Dong","doi":"10.1145/3308558.3314144","DOIUrl":null,"url":null,"abstract":"The demo presents TaxVis, a visual detection system for tax auditor. The system supports tax evasion group detection based on a two-phase detection approach. Different from the pattern matching based methods, this two-phase method can analyze the suspicious groups automatically without artificial extraction of tax evasion patterns. In the first phase, we use a network embedding method node2vec to learn representations that embed corporations from a Corporation Associated Network (CANet), and use LightGBM to calculate a suspicious score for each corporation. In the second phase, the system use three detection rules to analyze the transaction anomaly around the suspicious corporations. According to these transaction anomalies, we can discover potential suspicious tax evasion groups. We demonstrate TaxVis on tax data of Shaanxi province in China to verify the usefulness of the system.","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"184 9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"TaxVis: a Visual System for Detecting Tax Evasion Group\",\"authors\":\"Hongchao Yu, Huan He, Q. Zheng, Bo Dong\",\"doi\":\"10.1145/3308558.3314144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The demo presents TaxVis, a visual detection system for tax auditor. The system supports tax evasion group detection based on a two-phase detection approach. Different from the pattern matching based methods, this two-phase method can analyze the suspicious groups automatically without artificial extraction of tax evasion patterns. In the first phase, we use a network embedding method node2vec to learn representations that embed corporations from a Corporation Associated Network (CANet), and use LightGBM to calculate a suspicious score for each corporation. In the second phase, the system use three detection rules to analyze the transaction anomaly around the suspicious corporations. According to these transaction anomalies, we can discover potential suspicious tax evasion groups. We demonstrate TaxVis on tax data of Shaanxi province in China to verify the usefulness of the system.\",\"PeriodicalId\":23013,\"journal\":{\"name\":\"The World Wide Web Conference\",\"volume\":\"184 9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The World Wide Web Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3308558.3314144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3314144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

演示演示了TaxVis,一个税务审计员的视觉检测系统。系统支持基于两阶段检测方法的偷税漏税群体检测。与基于模式匹配的方法不同,该方法可以自动分析可疑群体,无需人工提取逃税模式。在第一阶段,我们使用网络嵌入方法node2vec从公司关联网络(CANet)中学习嵌入公司的表示,并使用LightGBM计算每个公司的可疑分数。在第二阶段,系统使用三条检测规则对可疑公司周围的交易异常进行分析。根据这些交易异常,我们可以发现潜在的可疑逃税集团。我们以中国陕西省的税收数据为例,验证了该系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TaxVis: a Visual System for Detecting Tax Evasion Group
The demo presents TaxVis, a visual detection system for tax auditor. The system supports tax evasion group detection based on a two-phase detection approach. Different from the pattern matching based methods, this two-phase method can analyze the suspicious groups automatically without artificial extraction of tax evasion patterns. In the first phase, we use a network embedding method node2vec to learn representations that embed corporations from a Corporation Associated Network (CANet), and use LightGBM to calculate a suspicious score for each corporation. In the second phase, the system use three detection rules to analyze the transaction anomaly around the suspicious corporations. According to these transaction anomalies, we can discover potential suspicious tax evasion groups. We demonstrate TaxVis on tax data of Shaanxi province in China to verify the usefulness of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoupled Smoothing on Graphs Think Outside the Dataset: Finding Fraudulent Reviews using Cross-Dataset Analysis Augmenting Knowledge Tracing by Considering Forgetting Behavior Enhancing Fashion Recommendation with Visual Compatibility Relationship Judging a Book by Its Cover: The Effect of Facial Perception on Centrality in Social Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1