仿生神经计算用全固态离子掺杂突触晶体管

Q. Wang, C. Zhao, W. Liu, H. Zalinge, Y. Liu, L. Yang, C. Zhao
{"title":"仿生神经计算用全固态离子掺杂突触晶体管","authors":"Q. Wang, C. Zhao, W. Liu, H. Zalinge, Y. Liu, L. Yang, C. Zhao","doi":"10.1109/ICICDT51558.2021.9626468","DOIUrl":null,"url":null,"abstract":"Artificial synapses are the critical component for low-power neuromorphic computing, which surpasses the limitations of von Neumann’s structure. Compared with two-terminal memristors and three-terminal transistors with wire formation and charge trapping mechanisms, the emerging electrolytic gated transistor (EGT) has proven to be a promising neuromorphic application due to its outstanding analog switching performance. Candidate. This paper presents a new low-temperature solution-based oxide thin film transistor, which uses an ion-doped dielectric layer. The device also has a low-noise linear conductance update and a relatively high Gmax/Gmin. The realization of ANN neuromorphic calculation has nearly ideal accuracy. These results highlight the potential of EGT based on AlOx-Li/InOx thin-film transistors in the next generation of low-power electronics outside of the von Neumann architecture.","PeriodicalId":6737,"journal":{"name":"2021 International Conference on IC Design and Technology (ICICDT)","volume":"8 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"All-solid-state Ion Doping Synaptic Transistor for Bionic Neural computing\",\"authors\":\"Q. Wang, C. Zhao, W. Liu, H. Zalinge, Y. Liu, L. Yang, C. Zhao\",\"doi\":\"10.1109/ICICDT51558.2021.9626468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial synapses are the critical component for low-power neuromorphic computing, which surpasses the limitations of von Neumann’s structure. Compared with two-terminal memristors and three-terminal transistors with wire formation and charge trapping mechanisms, the emerging electrolytic gated transistor (EGT) has proven to be a promising neuromorphic application due to its outstanding analog switching performance. Candidate. This paper presents a new low-temperature solution-based oxide thin film transistor, which uses an ion-doped dielectric layer. The device also has a low-noise linear conductance update and a relatively high Gmax/Gmin. The realization of ANN neuromorphic calculation has nearly ideal accuracy. These results highlight the potential of EGT based on AlOx-Li/InOx thin-film transistors in the next generation of low-power electronics outside of the von Neumann architecture.\",\"PeriodicalId\":6737,\"journal\":{\"name\":\"2021 International Conference on IC Design and Technology (ICICDT)\",\"volume\":\"8 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on IC Design and Technology (ICICDT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICDT51558.2021.9626468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on IC Design and Technology (ICICDT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICDT51558.2021.9626468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人工突触是低功耗神经形态计算的关键组成部分,它超越了冯·诺伊曼结构的限制。与具有成线和电荷捕获机制的双端忆阻器和三端晶体管相比,新兴的电解门控晶体管(EGT)由于其出色的模拟开关性能而被证明是一种有前途的神经形态应用。候选人。本文提出了一种新型的低温溶液型氧化物薄膜晶体管,该晶体管采用离子掺杂的介电层。该器件还具有低噪声线性电导更新和相对较高的Gmax/Gmin。神经形态计算的实现具有接近理想的精度。这些结果突出了基于AlOx-Li/InOx薄膜晶体管的EGT在冯·诺伊曼架构之外的下一代低功耗电子产品中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
All-solid-state Ion Doping Synaptic Transistor for Bionic Neural computing
Artificial synapses are the critical component for low-power neuromorphic computing, which surpasses the limitations of von Neumann’s structure. Compared with two-terminal memristors and three-terminal transistors with wire formation and charge trapping mechanisms, the emerging electrolytic gated transistor (EGT) has proven to be a promising neuromorphic application due to its outstanding analog switching performance. Candidate. This paper presents a new low-temperature solution-based oxide thin film transistor, which uses an ion-doped dielectric layer. The device also has a low-noise linear conductance update and a relatively high Gmax/Gmin. The realization of ANN neuromorphic calculation has nearly ideal accuracy. These results highlight the potential of EGT based on AlOx-Li/InOx thin-film transistors in the next generation of low-power electronics outside of the von Neumann architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Device engineering guidelines for performance boost in IGZO front gated TFTs based on defect control Design process interactions in shallow trench isolation chemical mechanical planarization for layout diversification and design optimization Approaches for Optimizing Near Infrared Si Photodetectors Based on Internal Photoemission Deterministic Tagging Technology for Device Authentication Robust Training of Optical Neural Network with Practical Errors using Genetic Algorithm: A Case Study in Silicon-on-Insulator-Based Photonic Integrated Chips
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1