Menghao Liu, C. Du, Zhiyong Liu, Li Wang, Rui Zhong, Xiaojie Cheng, Jiawei Ao, Teng Duan, Yuetong Zhu, Xiaogang Li
{"title":"双相不锈钢的点蚀和环境辅助开裂研究进展","authors":"Menghao Liu, C. Du, Zhiyong Liu, Li Wang, Rui Zhong, Xiaojie Cheng, Jiawei Ao, Teng Duan, Yuetong Zhu, Xiaogang Li","doi":"10.20517/microstructures.2023.02","DOIUrl":null,"url":null,"abstract":"Duplex stainless steel is widely used in the petrochemical, maritime, and food industries. However, duplex stainless steel has the problem of corrosion failures during use. This topic has not been comprehensively and academically reviewed. These factors motivate the authors to review the developments in the corrosion research of duplex stainless steel. The review found that the primary reasons for the failure of duplex stainless steels are pitting corrosion and chloride-induced stress corrosion cracking. After being submerged in water, the evolution of the passive film on the duplex stainless steel can be loosely classified into three stages: nucleation, rapid growth, and stable growth stages. Instead of dramatic rupture, the passive film rupture process is a continuous metal oxidation process. Environmental factors scarcely affect the double-layer structure of the passive film, but they affect the film's overall thickness, oxide ratio, and defect concentration. The six mechanisms of alloying elements on pitting corrosion are summarized as stabilization, ineffective, soluble precipitates, soluble inclusions, insoluble inclusions, and wrapping mechanisms. In environments containing chlorides, ferrite undergoes pitting corrosion more easily than austenite. However, the pitting corrosion resistance reverses when sufficiently large deformation is used. The mechanisms of pitting corrosion induced by precipitates include the Cr-depletion, microgalvanic, and high-stress field theories. Chloride-induced cracks always initiate in the corrosion pits and blunt when encountering austenite. Phase boundaries are both strong hydrogen traps and rapid hydrogen diffusion pathways during hydrogen-induced stress cracking.","PeriodicalId":22044,"journal":{"name":"Superlattices and Microstructures","volume":"33 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A review on pitting corrosion and environmentally assisted cracking on duplex stainless steel\",\"authors\":\"Menghao Liu, C. Du, Zhiyong Liu, Li Wang, Rui Zhong, Xiaojie Cheng, Jiawei Ao, Teng Duan, Yuetong Zhu, Xiaogang Li\",\"doi\":\"10.20517/microstructures.2023.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Duplex stainless steel is widely used in the petrochemical, maritime, and food industries. However, duplex stainless steel has the problem of corrosion failures during use. This topic has not been comprehensively and academically reviewed. These factors motivate the authors to review the developments in the corrosion research of duplex stainless steel. The review found that the primary reasons for the failure of duplex stainless steels are pitting corrosion and chloride-induced stress corrosion cracking. After being submerged in water, the evolution of the passive film on the duplex stainless steel can be loosely classified into three stages: nucleation, rapid growth, and stable growth stages. Instead of dramatic rupture, the passive film rupture process is a continuous metal oxidation process. Environmental factors scarcely affect the double-layer structure of the passive film, but they affect the film's overall thickness, oxide ratio, and defect concentration. The six mechanisms of alloying elements on pitting corrosion are summarized as stabilization, ineffective, soluble precipitates, soluble inclusions, insoluble inclusions, and wrapping mechanisms. In environments containing chlorides, ferrite undergoes pitting corrosion more easily than austenite. However, the pitting corrosion resistance reverses when sufficiently large deformation is used. The mechanisms of pitting corrosion induced by precipitates include the Cr-depletion, microgalvanic, and high-stress field theories. Chloride-induced cracks always initiate in the corrosion pits and blunt when encountering austenite. Phase boundaries are both strong hydrogen traps and rapid hydrogen diffusion pathways during hydrogen-induced stress cracking.\",\"PeriodicalId\":22044,\"journal\":{\"name\":\"Superlattices and Microstructures\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Superlattices and Microstructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.20517/microstructures.2023.02\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superlattices and Microstructures","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.20517/microstructures.2023.02","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
A review on pitting corrosion and environmentally assisted cracking on duplex stainless steel
Duplex stainless steel is widely used in the petrochemical, maritime, and food industries. However, duplex stainless steel has the problem of corrosion failures during use. This topic has not been comprehensively and academically reviewed. These factors motivate the authors to review the developments in the corrosion research of duplex stainless steel. The review found that the primary reasons for the failure of duplex stainless steels are pitting corrosion and chloride-induced stress corrosion cracking. After being submerged in water, the evolution of the passive film on the duplex stainless steel can be loosely classified into three stages: nucleation, rapid growth, and stable growth stages. Instead of dramatic rupture, the passive film rupture process is a continuous metal oxidation process. Environmental factors scarcely affect the double-layer structure of the passive film, but they affect the film's overall thickness, oxide ratio, and defect concentration. The six mechanisms of alloying elements on pitting corrosion are summarized as stabilization, ineffective, soluble precipitates, soluble inclusions, insoluble inclusions, and wrapping mechanisms. In environments containing chlorides, ferrite undergoes pitting corrosion more easily than austenite. However, the pitting corrosion resistance reverses when sufficiently large deformation is used. The mechanisms of pitting corrosion induced by precipitates include the Cr-depletion, microgalvanic, and high-stress field theories. Chloride-induced cracks always initiate in the corrosion pits and blunt when encountering austenite. Phase boundaries are both strong hydrogen traps and rapid hydrogen diffusion pathways during hydrogen-induced stress cracking.
期刊介绍:
Micro and Nanostructures is a journal disseminating the science and technology of micro-structures and nano-structures in materials and their devices, including individual and collective use of semiconductors, metals and insulators for the exploitation of their unique properties. The journal hosts papers dealing with fundamental and applied experimental research as well as theoretical studies. Fields of interest, including emerging ones, cover:
• Novel micro and nanostructures
• Nanomaterials (nanowires, nanodots, 2D materials ) and devices
• Synthetic heterostructures
• Plasmonics
• Micro and nano-defects in materials (semiconductor, metal and insulators)
• Surfaces and interfaces of thin films
In addition to Research Papers, the journal aims at publishing Topical Reviews providing insights into rapidly evolving or more mature fields. Written by leading researchers in their respective fields, those articles are commissioned by the Editorial Board.
Formerly known as Superlattices and Microstructures, with a 2021 IF of 3.22 and 2021 CiteScore of 5.4