基于乘法器的交变方向优化方法求解安全约束的交流最优潮流

IF 0.7 4区 管理学 Q3 Engineering Military Operations Research Pub Date : 2022-02-14 DOI:10.1287/opre.2023.2486
A. Gholami, Kaizhao Sun, Shixu Zhang, X. Sun
{"title":"基于乘法器的交变方向优化方法求解安全约束的交流最优潮流","authors":"A. Gholami, Kaizhao Sun, Shixu Zhang, X. Sun","doi":"10.1287/opre.2023.2486","DOIUrl":null,"url":null,"abstract":"When optimizing electric power system operational decisions, it is of great importance to prevent potential failures in both the system operation and the optimization algorithm. In “An Alternating Direction Method of Multipliers-Based Distributed Optimization Method for Solving Security-Constrained Alternating Current Optimal Power Flow,” Gholami, Sun, Zhang, and Sun propose a novel two-level algorithm that (1) effectively prevents power system operational failures through consideration of impactful contingencies and (2) guarantees convergence when parallelized on a computing cluster with multiple nodes. Extensive numerical experiments suggest that the proposed algorithm is able to provide high-quality feasible solutions under the time limit of 10–45 minutes for various synthetic and industrial networks with up to 30,000 buses and 22,000 contingencies, comparable with the size of the U.S. power grid.","PeriodicalId":49809,"journal":{"name":"Military Operations Research","volume":"55 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Alternating Direction Method of Multipliers-Based Distributed Optimization Method for Solving Security-Constrained Alternating Current Optimal Power Flow\",\"authors\":\"A. Gholami, Kaizhao Sun, Shixu Zhang, X. Sun\",\"doi\":\"10.1287/opre.2023.2486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When optimizing electric power system operational decisions, it is of great importance to prevent potential failures in both the system operation and the optimization algorithm. In “An Alternating Direction Method of Multipliers-Based Distributed Optimization Method for Solving Security-Constrained Alternating Current Optimal Power Flow,” Gholami, Sun, Zhang, and Sun propose a novel two-level algorithm that (1) effectively prevents power system operational failures through consideration of impactful contingencies and (2) guarantees convergence when parallelized on a computing cluster with multiple nodes. Extensive numerical experiments suggest that the proposed algorithm is able to provide high-quality feasible solutions under the time limit of 10–45 minutes for various synthetic and industrial networks with up to 30,000 buses and 22,000 contingencies, comparable with the size of the U.S. power grid.\",\"PeriodicalId\":49809,\"journal\":{\"name\":\"Military Operations Research\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Military Operations Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1287/opre.2023.2486\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Military Operations Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/opre.2023.2486","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

摘要

在优化电力系统运行决策时,防止系统运行和优化算法中的潜在故障是非常重要的。Gholami, Sun, Zhang和Sun在“基于乘法器的分布式优化方法的交替方向方法求解安全约束的交流最优潮流”中提出了一种新的两级算法,该算法(1)通过考虑有影响的意外事件有效地防止电力系统运行故障;(2)在具有多个节点的计算集群上并行化时保证收敛性。大量的数值实验表明,所提出的算法能够在10-45分钟的时间限制下,为具有多达30,000总线和22,000个突发事件的各种合成和工业网络提供高质量的可行解决方案,与美国电网的规模相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Alternating Direction Method of Multipliers-Based Distributed Optimization Method for Solving Security-Constrained Alternating Current Optimal Power Flow
When optimizing electric power system operational decisions, it is of great importance to prevent potential failures in both the system operation and the optimization algorithm. In “An Alternating Direction Method of Multipliers-Based Distributed Optimization Method for Solving Security-Constrained Alternating Current Optimal Power Flow,” Gholami, Sun, Zhang, and Sun propose a novel two-level algorithm that (1) effectively prevents power system operational failures through consideration of impactful contingencies and (2) guarantees convergence when parallelized on a computing cluster with multiple nodes. Extensive numerical experiments suggest that the proposed algorithm is able to provide high-quality feasible solutions under the time limit of 10–45 minutes for various synthetic and industrial networks with up to 30,000 buses and 22,000 contingencies, comparable with the size of the U.S. power grid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Military Operations Research
Military Operations Research 管理科学-运筹学与管理科学
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Military Operations Research is a peer-reviewed journal of high academic quality. The Journal publishes articles that describe operations research (OR) methodologies and theories used in key military and national security applications. Of particular interest are papers that present: Case studies showing innovative OR applications Apply OR to major policy issues Introduce interesting new problems areas Highlight education issues Document the history of military and national security OR.
期刊最新文献
Optimal Routing Under Demand Surges: The Value of Future Arrival Rates Demand Estimation Under Uncertain Consideration Sets Optimal Routing to Parallel Servers in Heavy Traffic The When and How of Delegated Search A Data-Driven Approach to Beating SAA Out of Sample
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1