基于三种新型混合支持向量回归模型的地下水水质建模

S. Emami, Y. Choopan, J. Parsa, Omid Jahandideh
{"title":"基于三种新型混合支持向量回归模型的地下水水质建模","authors":"S. Emami, Y. Choopan, J. Parsa, Omid Jahandideh","doi":"10.22104/AET.2021.4286.1212","DOIUrl":null,"url":null,"abstract":"During recent decades, the excessive use of water has led to the scarcity of the available surface and groundwater resources. Quantitative and qualitative surveys of groundwater resources indicate that accurate and efficient optimization methods can help to overcome the numerous challenges in assessment of groundwater quality. For this purpose, three optimization meta-heuristic algorithms, including imperialist competitive (ICA), election (EA), and grey wolf (GWO), as well as the support vector regression method (SVR), were used to simulate the groundwater quality of the Salmas Plain. To achieve this goal, the data of the groundwater quality for the Salmas plain were utilized in a statistical period of 10 years (2002-2011). The results were evaluated according to Wilcox, Schuler, and Piper standards. The results indicated higher accuracy of the GWO-SVR method compared to the other two methods with values of R2=0.981, RMSE=0.020 and NSE=0.975. In general, a comparison of the results obtained from the hybrid methods and different diagrams showed that the samples had low hardness and corrosion. Also, the results indicated the high capability and accuracy of the GWO-SVR method in estimating and simulating the groundwater quality.","PeriodicalId":7295,"journal":{"name":"Advances in environmental science and technology","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Modeling Groundwater Quality Using Three Novel Hybrid Support Vector Regression Models\",\"authors\":\"S. Emami, Y. Choopan, J. Parsa, Omid Jahandideh\",\"doi\":\"10.22104/AET.2021.4286.1212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During recent decades, the excessive use of water has led to the scarcity of the available surface and groundwater resources. Quantitative and qualitative surveys of groundwater resources indicate that accurate and efficient optimization methods can help to overcome the numerous challenges in assessment of groundwater quality. For this purpose, three optimization meta-heuristic algorithms, including imperialist competitive (ICA), election (EA), and grey wolf (GWO), as well as the support vector regression method (SVR), were used to simulate the groundwater quality of the Salmas Plain. To achieve this goal, the data of the groundwater quality for the Salmas plain were utilized in a statistical period of 10 years (2002-2011). The results were evaluated according to Wilcox, Schuler, and Piper standards. The results indicated higher accuracy of the GWO-SVR method compared to the other two methods with values of R2=0.981, RMSE=0.020 and NSE=0.975. In general, a comparison of the results obtained from the hybrid methods and different diagrams showed that the samples had low hardness and corrosion. Also, the results indicated the high capability and accuracy of the GWO-SVR method in estimating and simulating the groundwater quality.\",\"PeriodicalId\":7295,\"journal\":{\"name\":\"Advances in environmental science and technology\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in environmental science and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22104/AET.2021.4286.1212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in environmental science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22104/AET.2021.4286.1212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

近几十年来,过度用水导致可利用的地表水和地下水资源短缺。地下水资源的定量和定性调查表明,准确有效的优化方法有助于克服地下水质量评价中的诸多挑战。为此,采用帝国主义竞争(ICA)、选举(EA)和灰狼(GWO)三种优化元启发式算法以及支持向量回归法(SVR)对萨尔玛斯平原地下水水质进行了模拟。为了实现这一目标,我们利用了萨尔马斯平原2002-2011年10年的地下水水质统计数据。根据Wilcox, Schuler和Piper标准对结果进行评估。结果表明,GWO-SVR方法的准确率高于其他两种方法,R2=0.981, RMSE=0.020, NSE=0.975。总的来说,混合方法和不同图的结果比较表明,样品的硬度和腐蚀都很低。结果表明,GWO-SVR方法对地下水水质的估计和模拟具有较高的能力和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling Groundwater Quality Using Three Novel Hybrid Support Vector Regression Models
During recent decades, the excessive use of water has led to the scarcity of the available surface and groundwater resources. Quantitative and qualitative surveys of groundwater resources indicate that accurate and efficient optimization methods can help to overcome the numerous challenges in assessment of groundwater quality. For this purpose, three optimization meta-heuristic algorithms, including imperialist competitive (ICA), election (EA), and grey wolf (GWO), as well as the support vector regression method (SVR), were used to simulate the groundwater quality of the Salmas Plain. To achieve this goal, the data of the groundwater quality for the Salmas plain were utilized in a statistical period of 10 years (2002-2011). The results were evaluated according to Wilcox, Schuler, and Piper standards. The results indicated higher accuracy of the GWO-SVR method compared to the other two methods with values of R2=0.981, RMSE=0.020 and NSE=0.975. In general, a comparison of the results obtained from the hybrid methods and different diagrams showed that the samples had low hardness and corrosion. Also, the results indicated the high capability and accuracy of the GWO-SVR method in estimating and simulating the groundwater quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical analysis of tropospheric ozone and its precursors using principal component analysis in an urban area of Surat, India The effects of different materials of green roofing on the quantity and quality of stored and drainage water by using simulated rainfall setup The CO2 removal of flue gas using hollow fiber membrane contactor: a comprehensive modeling and new perspectives Social Cost of CO2 emissions in Tehran Waste Management Scenarios and select the scenario based on least impact on Global Warming by using Life Cycle Assessment Surface Ignition Using Ethanol on Mo and Al2O3-TiO2 Coated in CI Engine for Environmental Benefits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1