超启发式一般电子游戏

André Mendes, J. Togelius, Andy Nealen
{"title":"超启发式一般电子游戏","authors":"André Mendes, J. Togelius, Andy Nealen","doi":"10.1109/CIG.2016.7860398","DOIUrl":null,"url":null,"abstract":"In general video game playing, the challenge is to create agents that play unseen games proficiently. Stochastic tree search algorithms, like Monte Carlo Tree Search, perform relatively well on this task. However, performance is non-transitive: different agents perform best in different games, which means that there is not a single agent that is the best in all the games. Rather, some types of games are dominated by a few agents whereas other different agents dominate other types of games. Thus, it should be possible to construct a hyper-agent that selects from a portfolio, in which constituent sub-agents will play a new game best. Since there is no knowledge about the games, the agent needs to use available features to predict the most suitable algorithm. This work constructs such a hyper-agent using the General Video Game Playing Framework (GVGAI). The proposed method achieves promising results that show the applicability of hyper-heuristics in general video game playing and related tasks.","PeriodicalId":6594,"journal":{"name":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"16 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Hyper-heuristic general video game playing\",\"authors\":\"André Mendes, J. Togelius, Andy Nealen\",\"doi\":\"10.1109/CIG.2016.7860398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In general video game playing, the challenge is to create agents that play unseen games proficiently. Stochastic tree search algorithms, like Monte Carlo Tree Search, perform relatively well on this task. However, performance is non-transitive: different agents perform best in different games, which means that there is not a single agent that is the best in all the games. Rather, some types of games are dominated by a few agents whereas other different agents dominate other types of games. Thus, it should be possible to construct a hyper-agent that selects from a portfolio, in which constituent sub-agents will play a new game best. Since there is no knowledge about the games, the agent needs to use available features to predict the most suitable algorithm. This work constructs such a hyper-agent using the General Video Game Playing Framework (GVGAI). The proposed method achieves promising results that show the applicability of hyper-heuristics in general video game playing and related tasks.\",\"PeriodicalId\":6594,\"journal\":{\"name\":\"2016 IEEE Conference on Computational Intelligence and Games (CIG)\",\"volume\":\"16 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computational Intelligence and Games (CIG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2016.7860398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2016.7860398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

在一般的电子游戏中,挑战在于创造能够熟练地玩未知游戏的代理。随机树搜索算法,如蒙特卡洛树搜索,在这个任务上表现相对较好。然而,性能是不可传递的:不同的代理在不同的游戏中表现最好,这意味着不存在一个代理在所有游戏中都是最好的。相反,某些类型的游戏是由少数代理主导的,而其他不同的代理主导其他类型的游戏。因此,应该有可能构建一个从投资组合中进行选择的超级代理,其中组成子代理将在新的博弈中发挥最佳作用。由于没有关于游戏的知识,代理需要使用可用的特征来预测最合适的算法。这项工作使用通用视频游戏框架(GVGAI)构建了这样一个超级代理。该方法取得了令人满意的结果,显示了超启发式在一般视频游戏和相关任务中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hyper-heuristic general video game playing
In general video game playing, the challenge is to create agents that play unseen games proficiently. Stochastic tree search algorithms, like Monte Carlo Tree Search, perform relatively well on this task. However, performance is non-transitive: different agents perform best in different games, which means that there is not a single agent that is the best in all the games. Rather, some types of games are dominated by a few agents whereas other different agents dominate other types of games. Thus, it should be possible to construct a hyper-agent that selects from a portfolio, in which constituent sub-agents will play a new game best. Since there is no knowledge about the games, the agent needs to use available features to predict the most suitable algorithm. This work constructs such a hyper-agent using the General Video Game Playing Framework (GVGAI). The proposed method achieves promising results that show the applicability of hyper-heuristics in general video game playing and related tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Human gesture classification by brute-force machine learning for exergaming in physiotherapy Evolving micro for 3D Real-Time Strategy games Constrained surprise search for content generation Design influence on player retention: A method based on time varying survival analysis Deep Q-learning using redundant outputs in visual doom
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1