{"title":"利用神经网络的李雅普诺夫函数的低秩核逼近","authors":"K. Webster","doi":"10.3934/jcd.2022026","DOIUrl":null,"url":null,"abstract":"We study the use of single hidden layer neural networks for the approximation of Lyapunov functions in autonomous ordinary differential equations. In particular, we focus on the connection between this approach and that of the meshless collocation method using reproducing kernel Hilbert spaces. It is shown that under certain conditions, an optimised neural network is functionally equivalent to the RKHS generalised interpolant solution corresponding to a kernel function that is implicitly defined by the neural network. We demonstrate convergence of the neural network approximation using several numerical examples, and compare with approximations obtained by the meshless collocation method. Finally, motivated by our theoretical and numerical findings, we propose a new iterative algorithm for the approximation of Lyapunov functions using single hidden layer neural networks.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Low-rank kernel approximation of Lyapunov functions using neural networks\",\"authors\":\"K. Webster\",\"doi\":\"10.3934/jcd.2022026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the use of single hidden layer neural networks for the approximation of Lyapunov functions in autonomous ordinary differential equations. In particular, we focus on the connection between this approach and that of the meshless collocation method using reproducing kernel Hilbert spaces. It is shown that under certain conditions, an optimised neural network is functionally equivalent to the RKHS generalised interpolant solution corresponding to a kernel function that is implicitly defined by the neural network. We demonstrate convergence of the neural network approximation using several numerical examples, and compare with approximations obtained by the meshless collocation method. Finally, motivated by our theoretical and numerical findings, we propose a new iterative algorithm for the approximation of Lyapunov functions using single hidden layer neural networks.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/jcd.2022026\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jcd.2022026","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Low-rank kernel approximation of Lyapunov functions using neural networks
We study the use of single hidden layer neural networks for the approximation of Lyapunov functions in autonomous ordinary differential equations. In particular, we focus on the connection between this approach and that of the meshless collocation method using reproducing kernel Hilbert spaces. It is shown that under certain conditions, an optimised neural network is functionally equivalent to the RKHS generalised interpolant solution corresponding to a kernel function that is implicitly defined by the neural network. We demonstrate convergence of the neural network approximation using several numerical examples, and compare with approximations obtained by the meshless collocation method. Finally, motivated by our theoretical and numerical findings, we propose a new iterative algorithm for the approximation of Lyapunov functions using single hidden layer neural networks.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.