{"title":"激光强度波动对1064nm显微光镊中单铯原子捕获寿命的影响","authors":"R. Sun, Xin Wang, Kong Zhang, Jun He, Junmin Wang","doi":"10.3390/app10020659","DOIUrl":null,"url":null,"abstract":"An optical tweezer composed of a strongly focused single-spatial-mode Gaussian beam of a red-detuned 1064-nm laser can confine a single-cesium (Cs) atom at the strongest point of the light intensity. We can use this for coherent manipulation of single-quantum bits and single-photon sources. The trapping lifetime of the atoms in the optical tweezers is very short due to the impact of the background atoms, the laser intensity fluctuation of optical tweezer and the residual thermal motion of the atoms. In this paper, we analyzed the influence of the background pressure, the trap frequency of optical tweezers and the parametric heating of the optical tweezer on the atomic trapping lifetime. Combined with the external feedback loop based on an acousto-optical modulator (AOM), the intensity fluctuation of the 1064-nm laser in the time domain was suppressed from $\\pm$ 3.360$\\%$ to $\\pm$ 0.064$\\%$, and the suppression bandwidth reached approximately 33 kHz. The trapping lifetime of a single Cs atom in the microscopic optical tweezer was extended from 4.04 s to 6.34 s.","PeriodicalId":8441,"journal":{"name":"arXiv: Atomic Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Influence of Laser Intensity Fluctuation on Single-Cesium Atom Trapping Lifetime in a 1064-nm Microscopic Optical Tweezer\",\"authors\":\"R. Sun, Xin Wang, Kong Zhang, Jun He, Junmin Wang\",\"doi\":\"10.3390/app10020659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An optical tweezer composed of a strongly focused single-spatial-mode Gaussian beam of a red-detuned 1064-nm laser can confine a single-cesium (Cs) atom at the strongest point of the light intensity. We can use this for coherent manipulation of single-quantum bits and single-photon sources. The trapping lifetime of the atoms in the optical tweezers is very short due to the impact of the background atoms, the laser intensity fluctuation of optical tweezer and the residual thermal motion of the atoms. In this paper, we analyzed the influence of the background pressure, the trap frequency of optical tweezers and the parametric heating of the optical tweezer on the atomic trapping lifetime. Combined with the external feedback loop based on an acousto-optical modulator (AOM), the intensity fluctuation of the 1064-nm laser in the time domain was suppressed from $\\\\pm$ 3.360$\\\\%$ to $\\\\pm$ 0.064$\\\\%$, and the suppression bandwidth reached approximately 33 kHz. The trapping lifetime of a single Cs atom in the microscopic optical tweezer was extended from 4.04 s to 6.34 s.\",\"PeriodicalId\":8441,\"journal\":{\"name\":\"arXiv: Atomic Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Atomic Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/app10020659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Atomic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/app10020659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of Laser Intensity Fluctuation on Single-Cesium Atom Trapping Lifetime in a 1064-nm Microscopic Optical Tweezer
An optical tweezer composed of a strongly focused single-spatial-mode Gaussian beam of a red-detuned 1064-nm laser can confine a single-cesium (Cs) atom at the strongest point of the light intensity. We can use this for coherent manipulation of single-quantum bits and single-photon sources. The trapping lifetime of the atoms in the optical tweezers is very short due to the impact of the background atoms, the laser intensity fluctuation of optical tweezer and the residual thermal motion of the atoms. In this paper, we analyzed the influence of the background pressure, the trap frequency of optical tweezers and the parametric heating of the optical tweezer on the atomic trapping lifetime. Combined with the external feedback loop based on an acousto-optical modulator (AOM), the intensity fluctuation of the 1064-nm laser in the time domain was suppressed from $\pm$ 3.360$\%$ to $\pm$ 0.064$\%$, and the suppression bandwidth reached approximately 33 kHz. The trapping lifetime of a single Cs atom in the microscopic optical tweezer was extended from 4.04 s to 6.34 s.