{"title":"MAXQFP:恩智浦面向汽车应用的全新封装解决方案","authors":"C. Lee, T. Tran, A. Mawer, Xs Pang, J. Yao","doi":"10.4071/1085-8024-2021.1.000015","DOIUrl":null,"url":null,"abstract":"\n 172-lead (16x16 mm body size) and 100-lead (10x10 mm body size) MAXQFP's and 172 MAXQFP_EP (exposed pad) for automotive industry are introduced. The advantage of MAXQFP as compare to standard LQFP/QFP packages will be outlined. Thermal & mechanical simulation results were performed to prove its advantage over conventional LQFP and LQFP_EP. The challenges in manufacturing, designs and concerns of tighter lead pitches for MAXQFP are briefly addressed. Methods and data to resolve these challenges will be shown. For example, Sn whisker and Sn migration both are concerns to MAXQFP because of smaller distance between adjacent leads. The board-level solder joint reliability (SJR) has been collected to prove it is AEC G1 compliant. Visual inspection methods and requirements on AOI (automatic object inspection) systems on solider joints of J-leads of MAXQFP for are proposed. Standard AEC G1 component level reliability stresses defined at AEC Q100 which are TC (temperature cycling), HTSL (high temperature storage life), THB (Temperature Humidity Biased) and uHAST (un-biased HAST) tests are summarized Since Cu wires were used, AEC Q006 data are also collected. Assembly challenges are described. Future works will be summarized.","PeriodicalId":14363,"journal":{"name":"International Symposium on Microelectronics","volume":"631 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MAXQFP: NXP's new package solution for automotive application\",\"authors\":\"C. Lee, T. Tran, A. Mawer, Xs Pang, J. Yao\",\"doi\":\"10.4071/1085-8024-2021.1.000015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n 172-lead (16x16 mm body size) and 100-lead (10x10 mm body size) MAXQFP's and 172 MAXQFP_EP (exposed pad) for automotive industry are introduced. The advantage of MAXQFP as compare to standard LQFP/QFP packages will be outlined. Thermal & mechanical simulation results were performed to prove its advantage over conventional LQFP and LQFP_EP. The challenges in manufacturing, designs and concerns of tighter lead pitches for MAXQFP are briefly addressed. Methods and data to resolve these challenges will be shown. For example, Sn whisker and Sn migration both are concerns to MAXQFP because of smaller distance between adjacent leads. The board-level solder joint reliability (SJR) has been collected to prove it is AEC G1 compliant. Visual inspection methods and requirements on AOI (automatic object inspection) systems on solider joints of J-leads of MAXQFP for are proposed. Standard AEC G1 component level reliability stresses defined at AEC Q100 which are TC (temperature cycling), HTSL (high temperature storage life), THB (Temperature Humidity Biased) and uHAST (un-biased HAST) tests are summarized Since Cu wires were used, AEC Q006 data are also collected. Assembly challenges are described. Future works will be summarized.\",\"PeriodicalId\":14363,\"journal\":{\"name\":\"International Symposium on Microelectronics\",\"volume\":\"631 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Microelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4071/1085-8024-2021.1.000015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Microelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4071/1085-8024-2021.1.000015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MAXQFP: NXP's new package solution for automotive application
172-lead (16x16 mm body size) and 100-lead (10x10 mm body size) MAXQFP's and 172 MAXQFP_EP (exposed pad) for automotive industry are introduced. The advantage of MAXQFP as compare to standard LQFP/QFP packages will be outlined. Thermal & mechanical simulation results were performed to prove its advantage over conventional LQFP and LQFP_EP. The challenges in manufacturing, designs and concerns of tighter lead pitches for MAXQFP are briefly addressed. Methods and data to resolve these challenges will be shown. For example, Sn whisker and Sn migration both are concerns to MAXQFP because of smaller distance between adjacent leads. The board-level solder joint reliability (SJR) has been collected to prove it is AEC G1 compliant. Visual inspection methods and requirements on AOI (automatic object inspection) systems on solider joints of J-leads of MAXQFP for are proposed. Standard AEC G1 component level reliability stresses defined at AEC Q100 which are TC (temperature cycling), HTSL (high temperature storage life), THB (Temperature Humidity Biased) and uHAST (un-biased HAST) tests are summarized Since Cu wires were used, AEC Q006 data are also collected. Assembly challenges are described. Future works will be summarized.