超声图像中血管区域分割:一种深度学习方法

Deepak Mishra, S. Chaudhury, M. Sarkar, Sidharth Manohar, A. Soin
{"title":"超声图像中血管区域分割:一种深度学习方法","authors":"Deepak Mishra, S. Chaudhury, M. Sarkar, Sidharth Manohar, A. Soin","doi":"10.1109/ISCAS.2018.8351049","DOIUrl":null,"url":null,"abstract":"Vascular region segmentation in ultrasound images is necessary for applications like automatic registration, and surgical navigation. In this paper, a pipelined network comprising of a convolutional neural network (CNN) followed by unsupervised clustering is proposed to perform vessel segmentation in liver ultrasound images. The work is motivated by the tremendous success of CNNs in object detection and localization. CNN here is trained to localize vascular regions, which are subsequently segmented by the clustering. The proposed network results in 99.14% pixel accuracy and 69.62% mean region intersection over union on 132 images. These values are better than some existing methods.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"2 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Segmentation of Vascular Regions in Ultrasound Images: A Deep Learning Approach\",\"authors\":\"Deepak Mishra, S. Chaudhury, M. Sarkar, Sidharth Manohar, A. Soin\",\"doi\":\"10.1109/ISCAS.2018.8351049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vascular region segmentation in ultrasound images is necessary for applications like automatic registration, and surgical navigation. In this paper, a pipelined network comprising of a convolutional neural network (CNN) followed by unsupervised clustering is proposed to perform vessel segmentation in liver ultrasound images. The work is motivated by the tremendous success of CNNs in object detection and localization. CNN here is trained to localize vascular regions, which are subsequently segmented by the clustering. The proposed network results in 99.14% pixel accuracy and 69.62% mean region intersection over union on 132 images. These values are better than some existing methods.\",\"PeriodicalId\":6569,\"journal\":{\"name\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"volume\":\"2 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2018.8351049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2018.8351049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

超声图像中的血管区域分割对于自动配准和手术导航等应用是必要的。本文提出了一种由卷积神经网络(CNN)和无监督聚类组成的流水线网络对肝脏超声图像进行血管分割。这项工作的动机是cnn在目标检测和定位方面取得的巨大成功。这里训练CNN定位血管区域,然后通过聚类对血管区域进行分割。在132幅图像上,该网络的像素精度为99.14%,平均区域相交率为69.62%。这些值比现有的一些方法要好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Segmentation of Vascular Regions in Ultrasound Images: A Deep Learning Approach
Vascular region segmentation in ultrasound images is necessary for applications like automatic registration, and surgical navigation. In this paper, a pipelined network comprising of a convolutional neural network (CNN) followed by unsupervised clustering is proposed to perform vessel segmentation in liver ultrasound images. The work is motivated by the tremendous success of CNNs in object detection and localization. CNN here is trained to localize vascular regions, which are subsequently segmented by the clustering. The proposed network results in 99.14% pixel accuracy and 69.62% mean region intersection over union on 132 images. These values are better than some existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra-Low Power Wide-Dynamic-Range Universal Interface for Capacitive and Resistive Sensors An Energy-Efficient 13-bit Zero-Crossing ΔΣ Capacitance-to-Digital Converter with 1 pF-to-10 nF Sensing Range Power Optimized Comparator Selecting Method For Stochastic ADC Brain-inspired recurrent neural network with plastic RRAM synapses On the Use of Approximate Multipliers in LMS Adaptive Filters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1