{"title":"带班迪反馈的非平稳随机优化的自适应技术要点","authors":"Yining Wang","doi":"10.1287/opre.2022.0576","DOIUrl":null,"url":null,"abstract":"Optimal Nonstationary Optimization Without Knowing Function Changes Nonstationary stochastic optimization plays a vital role in a number of computer science and operations research applications. It is known how to design and analyze algorithms that optimize a sequence of strongly convex/concave and smooth functions with access to only one-point noisy function values with the underlying function sequence subject to maximum magnitude of function changes. In recent work from Wang titled “Technical Note: On Adaptivity in Nonstationary Stochastic Optimization with Bandit Feedback,” an optimization algorithm is designed and analyzed without assuming the magnitude of function changes is known in advance. Optimality of the designed algorithm is demonstrated.","PeriodicalId":49809,"journal":{"name":"Military Operations Research","volume":"24 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technical Note—On Adaptivity in Nonstationary Stochastic Optimization with Bandit Feedback\",\"authors\":\"Yining Wang\",\"doi\":\"10.1287/opre.2022.0576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimal Nonstationary Optimization Without Knowing Function Changes Nonstationary stochastic optimization plays a vital role in a number of computer science and operations research applications. It is known how to design and analyze algorithms that optimize a sequence of strongly convex/concave and smooth functions with access to only one-point noisy function values with the underlying function sequence subject to maximum magnitude of function changes. In recent work from Wang titled “Technical Note: On Adaptivity in Nonstationary Stochastic Optimization with Bandit Feedback,” an optimization algorithm is designed and analyzed without assuming the magnitude of function changes is known in advance. Optimality of the designed algorithm is demonstrated.\",\"PeriodicalId\":49809,\"journal\":{\"name\":\"Military Operations Research\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Military Operations Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1287/opre.2022.0576\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Military Operations Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/opre.2022.0576","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Technical Note—On Adaptivity in Nonstationary Stochastic Optimization with Bandit Feedback
Optimal Nonstationary Optimization Without Knowing Function Changes Nonstationary stochastic optimization plays a vital role in a number of computer science and operations research applications. It is known how to design and analyze algorithms that optimize a sequence of strongly convex/concave and smooth functions with access to only one-point noisy function values with the underlying function sequence subject to maximum magnitude of function changes. In recent work from Wang titled “Technical Note: On Adaptivity in Nonstationary Stochastic Optimization with Bandit Feedback,” an optimization algorithm is designed and analyzed without assuming the magnitude of function changes is known in advance. Optimality of the designed algorithm is demonstrated.
期刊介绍:
Military Operations Research is a peer-reviewed journal of high academic quality. The Journal publishes articles that describe operations research (OR) methodologies and theories used in key military and national security applications. Of particular interest are papers that present: Case studies showing innovative OR applications Apply OR to major policy issues Introduce interesting new problems areas Highlight education issues Document the history of military and national security OR.