Jonathan H. Ma, Han Wang, D. Prendergast, A. Neureuther, P. Naulleau
{"title":"用第一性原理量子化学计算研究极紫外辐射化学","authors":"Jonathan H. Ma, Han Wang, D. Prendergast, A. Neureuther, P. Naulleau","doi":"10.1117/1.JMM.19.3.034601","DOIUrl":null,"url":null,"abstract":"Abstract. In extreme ultraviolet (EUV) lithography, chemistry is driven by secondary electrons. A deeper understanding of these processes is needed. However, electron-driven processes are inherently difficult to experimentally characterize for EUV materials, impeding targeted material engineering. A computational framework is needed to provide information for rational material engineering and identification at a molecular level. We demonstrate that density functional theory calculations can fulfill this purpose. We first demonstrate that primary electron energy spectrum can be predicted accurately. Second, the dynamics of a photoacid generator upon excitation or electron attachment are studied with ab-initio molecular dynamics calculations. Third, we demonstrate that electron attachment affinity is a good predictor of reduction potential and dose to clear. The correlation between such calculations and experiments suggests that these methods can be applied to computationally screen and design molecular components of EUV material and speed up the development process.","PeriodicalId":16522,"journal":{"name":"Journal of Micro/Nanolithography, MEMS, and MOEMS","volume":"116 1","pages":"034601 - 034601"},"PeriodicalIF":1.5000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigating extreme ultraviolet radiation chemistry with first-principles quantum chemistry calculations\",\"authors\":\"Jonathan H. Ma, Han Wang, D. Prendergast, A. Neureuther, P. Naulleau\",\"doi\":\"10.1117/1.JMM.19.3.034601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. In extreme ultraviolet (EUV) lithography, chemistry is driven by secondary electrons. A deeper understanding of these processes is needed. However, electron-driven processes are inherently difficult to experimentally characterize for EUV materials, impeding targeted material engineering. A computational framework is needed to provide information for rational material engineering and identification at a molecular level. We demonstrate that density functional theory calculations can fulfill this purpose. We first demonstrate that primary electron energy spectrum can be predicted accurately. Second, the dynamics of a photoacid generator upon excitation or electron attachment are studied with ab-initio molecular dynamics calculations. Third, we demonstrate that electron attachment affinity is a good predictor of reduction potential and dose to clear. The correlation between such calculations and experiments suggests that these methods can be applied to computationally screen and design molecular components of EUV material and speed up the development process.\",\"PeriodicalId\":16522,\"journal\":{\"name\":\"Journal of Micro/Nanolithography, MEMS, and MOEMS\",\"volume\":\"116 1\",\"pages\":\"034601 - 034601\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micro/Nanolithography, MEMS, and MOEMS\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JMM.19.3.034601\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro/Nanolithography, MEMS, and MOEMS","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.JMM.19.3.034601","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Investigating extreme ultraviolet radiation chemistry with first-principles quantum chemistry calculations
Abstract. In extreme ultraviolet (EUV) lithography, chemistry is driven by secondary electrons. A deeper understanding of these processes is needed. However, electron-driven processes are inherently difficult to experimentally characterize for EUV materials, impeding targeted material engineering. A computational framework is needed to provide information for rational material engineering and identification at a molecular level. We demonstrate that density functional theory calculations can fulfill this purpose. We first demonstrate that primary electron energy spectrum can be predicted accurately. Second, the dynamics of a photoacid generator upon excitation or electron attachment are studied with ab-initio molecular dynamics calculations. Third, we demonstrate that electron attachment affinity is a good predictor of reduction potential and dose to clear. The correlation between such calculations and experiments suggests that these methods can be applied to computationally screen and design molecular components of EUV material and speed up the development process.