脉冲离子显微镜探测量子气体

C. Veit, N. Zuber, O. Herrera-Sancho, V. S. Anasuri, T. Schmid, F. Meinert, R. Löw, T. Pfau
{"title":"脉冲离子显微镜探测量子气体","authors":"C. Veit, N. Zuber, O. Herrera-Sancho, V. S. Anasuri, T. Schmid, F. Meinert, R. Löw, T. Pfau","doi":"10.1103/PHYSREVX.11.011036","DOIUrl":null,"url":null,"abstract":"The advent of the quantum gas microscope allowed for the in situ probing of ultracold gaseous matter on an unprecedented level of spatial resolution. The study of phenomena on ever smaller length scales as well as the probing of three-dimensional systems is, however, fundamentally limited by the wavelength of the imaging light, for all techniques based on linear optics. Here we report on a high-resolution ion microscope as a versatile and powerful experimental tool to investigate quantum gases. The instrument clearly resolves atoms in an optical lattice with a spacing of $532\\,\\text{nm}$ over a field of view of 50 sites and offers an extremely large depth of field on the order of at least $70\\,\\mu\\text{m}$. With a simple model, we extract an upper limit for the achievable resolution of approximately $200\\,\\text{nm}$ from our data. We demonstrate a pulsed operation mode which in the future will enable 3D imaging and allow for the study of ionic impurities and Rydberg physics.","PeriodicalId":8441,"journal":{"name":"arXiv: Atomic Physics","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Pulsed Ion Microscope to Probe Quantum Gases\",\"authors\":\"C. Veit, N. Zuber, O. Herrera-Sancho, V. S. Anasuri, T. Schmid, F. Meinert, R. Löw, T. Pfau\",\"doi\":\"10.1103/PHYSREVX.11.011036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advent of the quantum gas microscope allowed for the in situ probing of ultracold gaseous matter on an unprecedented level of spatial resolution. The study of phenomena on ever smaller length scales as well as the probing of three-dimensional systems is, however, fundamentally limited by the wavelength of the imaging light, for all techniques based on linear optics. Here we report on a high-resolution ion microscope as a versatile and powerful experimental tool to investigate quantum gases. The instrument clearly resolves atoms in an optical lattice with a spacing of $532\\\\,\\\\text{nm}$ over a field of view of 50 sites and offers an extremely large depth of field on the order of at least $70\\\\,\\\\mu\\\\text{m}$. With a simple model, we extract an upper limit for the achievable resolution of approximately $200\\\\,\\\\text{nm}$ from our data. We demonstrate a pulsed operation mode which in the future will enable 3D imaging and allow for the study of ionic impurities and Rydberg physics.\",\"PeriodicalId\":8441,\"journal\":{\"name\":\"arXiv: Atomic Physics\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Atomic Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVX.11.011036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Atomic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVX.11.011036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

量子气体显微镜的出现使得对超冷气体物质的原位探测达到了前所未有的空间分辨率水平。然而,对于所有基于线性光学的技术来说,在更小的长度尺度上对现象的研究以及对三维系统的探测从根本上受到成像光波长的限制。在这里,我们报告了一种高分辨率离子显微镜作为一种多功能和强大的实验工具来研究量子气体。该仪器在50个点的视场范围内清晰地分辨出间距为$532\,\text{nm}$的光学晶格中的原子,并提供了至少$70\,\mu\text{m}$的极大的视场深度。通过一个简单的模型,我们从我们的数据中提取了大约$200\,\text{nm}$的可实现分辨率上限。我们演示了一种脉冲操作模式,未来将实现3D成像,并允许离子杂质和里德伯物理的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pulsed Ion Microscope to Probe Quantum Gases
The advent of the quantum gas microscope allowed for the in situ probing of ultracold gaseous matter on an unprecedented level of spatial resolution. The study of phenomena on ever smaller length scales as well as the probing of three-dimensional systems is, however, fundamentally limited by the wavelength of the imaging light, for all techniques based on linear optics. Here we report on a high-resolution ion microscope as a versatile and powerful experimental tool to investigate quantum gases. The instrument clearly resolves atoms in an optical lattice with a spacing of $532\,\text{nm}$ over a field of view of 50 sites and offers an extremely large depth of field on the order of at least $70\,\mu\text{m}$. With a simple model, we extract an upper limit for the achievable resolution of approximately $200\,\text{nm}$ from our data. We demonstrate a pulsed operation mode which in the future will enable 3D imaging and allow for the study of ionic impurities and Rydberg physics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A liquid nitrogen-cooled Ca+ optical clock with systematic uncertainty of 3×10-18 In Situ Sub-50-Attosecond Active Stabilization of the Delay Between Infrared and Extreme-Ultraviolet Light Pulses Laser spectroscopy of the 2S1/2 - 2P1/2, 2P3/2 transitions in stored and cooled relativistic C3+ ions High-Resolution Imaging of Cold Atoms through a Multimode Fiber Bistable optical transmission through arrays of atoms in free space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1