野火对河流温度和浑浊度影响的研究进展

IF 3 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL Progress in Physical Geography-Earth and Environment Pub Date : 2023-06-01 DOI:10.1177/03091333221118363
Junjie Chen, Heejun Chang
{"title":"野火对河流温度和浑浊度影响的研究进展","authors":"Junjie Chen, Heejun Chang","doi":"10.1177/03091333221118363","DOIUrl":null,"url":null,"abstract":"Wildfire has increased in severity and frequency with climate change and human activities in recent years, threatening water-related ecosystem services. Forested watersheds are at risk of impacts of wildfires that alter land cover, and hydrological processes, and influence drinking water quality and aquatic habitat. To date, most research on post-fire hydrologic effects has focused on water quantity, while stream temperature and turbidity received less attention. In this study, we reviewed 62 articles to examine wildfire drivers and processes associated with turbidity and stream temperature behavior through a geographic lens in the context of ecosystem services. Our goals were to (1) evaluate drivers of post-fire changes in turbidity and stream temperature; (2) examine mechanisms and processes responsible for spatial and temporal variabilities of changes; and (3) address scale-dependent knowledge gaps to recommend future research directions. Positive correlations between turbidity changes following wildfire were heavily influenced by fire severity, forest diversity, and landscape alterations by human activities such as salvage logging. Stream temperature increases result from loss of riparian canopy cover and decreased shading, but they were highly site-specific and dependent on topographic variations. We attribute variabilities in our findings to climate variability and heavy disparity across spatial and temporal scales when assessing the direction and magnitude of post-fire impacts. Future research should incorporate more long-term rigorous monitoring efforts and spatiotemporally explicit models to better represent the complex post-fire hydrologic system that influences water quality.","PeriodicalId":49659,"journal":{"name":"Progress in Physical Geography-Earth and Environment","volume":"1 1","pages":"369 - 394"},"PeriodicalIF":3.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A review of wildfire impacts on stream temperature and turbidity across scales\",\"authors\":\"Junjie Chen, Heejun Chang\",\"doi\":\"10.1177/03091333221118363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wildfire has increased in severity and frequency with climate change and human activities in recent years, threatening water-related ecosystem services. Forested watersheds are at risk of impacts of wildfires that alter land cover, and hydrological processes, and influence drinking water quality and aquatic habitat. To date, most research on post-fire hydrologic effects has focused on water quantity, while stream temperature and turbidity received less attention. In this study, we reviewed 62 articles to examine wildfire drivers and processes associated with turbidity and stream temperature behavior through a geographic lens in the context of ecosystem services. Our goals were to (1) evaluate drivers of post-fire changes in turbidity and stream temperature; (2) examine mechanisms and processes responsible for spatial and temporal variabilities of changes; and (3) address scale-dependent knowledge gaps to recommend future research directions. Positive correlations between turbidity changes following wildfire were heavily influenced by fire severity, forest diversity, and landscape alterations by human activities such as salvage logging. Stream temperature increases result from loss of riparian canopy cover and decreased shading, but they were highly site-specific and dependent on topographic variations. We attribute variabilities in our findings to climate variability and heavy disparity across spatial and temporal scales when assessing the direction and magnitude of post-fire impacts. Future research should incorporate more long-term rigorous monitoring efforts and spatiotemporally explicit models to better represent the complex post-fire hydrologic system that influences water quality.\",\"PeriodicalId\":49659,\"journal\":{\"name\":\"Progress in Physical Geography-Earth and Environment\",\"volume\":\"1 1\",\"pages\":\"369 - 394\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Physical Geography-Earth and Environment\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1177/03091333221118363\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Physical Geography-Earth and Environment","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1177/03091333221118363","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 2

摘要

近年来,随着气候变化和人类活动,野火的严重程度和频率有所增加,威胁到与水有关的生态系统服务。森林流域面临野火影响的风险,野火会改变土地覆盖和水文过程,并影响饮用水质量和水生生境。迄今为止,大多数关于火灾后水文效应的研究都集中在水量上,而对河流温度和浊度的关注较少。在这项研究中,我们回顾了62篇文章,通过生态系统服务的地理视角来研究野火驱动因素和与浊度和溪流温度行为相关的过程。我们的目标是(1)评估火灾后浊度和溪流温度变化的驱动因素;(2)研究导致变化时空变异的机制和过程;(3)解决尺度相关的知识缺口,建议未来的研究方向。野火后浊度变化之间的正相关关系受到火灾严重程度、森林多样性和人类活动(如回收采伐)造成的景观改变的严重影响。河流温度的升高是由于河岸树冠覆盖的减少和遮阳的减少,但它们具有高度的地点特异性和依赖于地形变化。在评估火灾后影响的方向和程度时,我们将研究结果的变异性归因于气候变率和时空尺度上的巨大差异。未来的研究应结合更长期严格的监测工作和时空明确的模型,以更好地代表影响水质的复杂的火灾后水文系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A review of wildfire impacts on stream temperature and turbidity across scales
Wildfire has increased in severity and frequency with climate change and human activities in recent years, threatening water-related ecosystem services. Forested watersheds are at risk of impacts of wildfires that alter land cover, and hydrological processes, and influence drinking water quality and aquatic habitat. To date, most research on post-fire hydrologic effects has focused on water quantity, while stream temperature and turbidity received less attention. In this study, we reviewed 62 articles to examine wildfire drivers and processes associated with turbidity and stream temperature behavior through a geographic lens in the context of ecosystem services. Our goals were to (1) evaluate drivers of post-fire changes in turbidity and stream temperature; (2) examine mechanisms and processes responsible for spatial and temporal variabilities of changes; and (3) address scale-dependent knowledge gaps to recommend future research directions. Positive correlations between turbidity changes following wildfire were heavily influenced by fire severity, forest diversity, and landscape alterations by human activities such as salvage logging. Stream temperature increases result from loss of riparian canopy cover and decreased shading, but they were highly site-specific and dependent on topographic variations. We attribute variabilities in our findings to climate variability and heavy disparity across spatial and temporal scales when assessing the direction and magnitude of post-fire impacts. Future research should incorporate more long-term rigorous monitoring efforts and spatiotemporally explicit models to better represent the complex post-fire hydrologic system that influences water quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
5.10%
发文量
53
审稿时长
>12 weeks
期刊介绍: Progress in Physical Geography is a peer-reviewed, international journal, encompassing an interdisciplinary approach incorporating the latest developments and debates within Physical Geography and interrelated fields across the Earth, Biological and Ecological System Sciences.
期刊最新文献
A review of flash flood hazards influenced by various solid material sources in mountain environment An excess-work approach to assessing channel instability potential within urban streams of Chicago, Illinois: Relative importance of spatial variability in hydraulic conditions and stormwater mitigation Long-term ecological studies on the oxbow ecosystems development and fire history in the Drava river valley (Central Europe): Implications for ecological restoration Fluvial encounters: Experimenting with a ‘River’s voice’ amidst light-based datafication Identification, computation, and mapping of anthropogenic landforms in urban areas: Case studies in the historical centre of Genoa, Italy (UNESCO World Heritage)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1