基于K-means算法的微博短文本聚类

Ma Xingliang, Li Fangfang
{"title":"基于K-means算法的微博短文本聚类","authors":"Ma Xingliang, Li Fangfang","doi":"10.1109/IICSPI.2018.8690507","DOIUrl":null,"url":null,"abstract":"Based on K-means algorithm, this paper proposed a short text clustering method. First of all, data of short texts on the Internet are collected by using the web crawler. Then, they are preprocessed, for example, irrelevant contents like noisy data, punctuation and stop words, are removed. After that, word segmentation is carried out on the preprocessed short texts, and distributed expression is carried out on the segmented words. Finally, these texts are clustered and sorted on the basis of K-means algorithm. According to the experiment results, methods put forward in the paper are appropriate for short text clustering.","PeriodicalId":6673,"journal":{"name":"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)","volume":"145 1","pages":"812-815"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clustering of Short Text in Micro-blog Based on K-means Algorithm\",\"authors\":\"Ma Xingliang, Li Fangfang\",\"doi\":\"10.1109/IICSPI.2018.8690507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on K-means algorithm, this paper proposed a short text clustering method. First of all, data of short texts on the Internet are collected by using the web crawler. Then, they are preprocessed, for example, irrelevant contents like noisy data, punctuation and stop words, are removed. After that, word segmentation is carried out on the preprocessed short texts, and distributed expression is carried out on the segmented words. Finally, these texts are clustered and sorted on the basis of K-means algorithm. According to the experiment results, methods put forward in the paper are appropriate for short text clustering.\",\"PeriodicalId\":6673,\"journal\":{\"name\":\"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)\",\"volume\":\"145 1\",\"pages\":\"812-815\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IICSPI.2018.8690507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICSPI.2018.8690507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于K-means算法,提出了一种短文本聚类方法。首先,利用网络爬虫收集互联网上的短文本数据。然后,对它们进行预处理,例如去除不相关的内容,如噪声数据、标点符号和停止词。然后对预处理后的短文本进行分词,对分词后的词进行分布式表达。最后,基于K-means算法对这些文本进行聚类和排序。实验结果表明,本文提出的方法适用于短文本聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clustering of Short Text in Micro-blog Based on K-means Algorithm
Based on K-means algorithm, this paper proposed a short text clustering method. First of all, data of short texts on the Internet are collected by using the web crawler. Then, they are preprocessed, for example, irrelevant contents like noisy data, punctuation and stop words, are removed. After that, word segmentation is carried out on the preprocessed short texts, and distributed expression is carried out on the segmented words. Finally, these texts are clustered and sorted on the basis of K-means algorithm. According to the experiment results, methods put forward in the paper are appropriate for short text clustering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Functional Safety Analysis and Design of Dual-Motor Hybrid Bus Clutch System Methods of Resource Allocation with Conflict Detection Exploration and Application of Sheet Metal Technology on Pit Package Repairing Study on Standardization of Electrolytic Trace Moisture Meter in Safety Construction of CNG Refueling Station The Research and Analysis of Big Data Application on Distribution Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1