{"title":"基于植物化学的耐药脑癌纳米制剂","authors":"S. Bhatt, N. Saini, Manish Kumar","doi":"10.2174/2210681213666230609152755","DOIUrl":null,"url":null,"abstract":"\n\nBrain tumor is the deadliest to treat with conventional drug therapy as it has various side effects on patients leading to organ failure.\n\n\n\nIt is difficult to treat brain cancers or deliver drugs to the targeted organ due to the numerous challenges faced. The current cytotoxic drugs have serious side effects, such as causing extreme damage to healthy cells, anemia associated with bone marrow suppression, constipation, small intestine infection, inflammatory responses, immunodeficiency, and multiorgan toxic effects. Low solubility, poor cell penetration, hepatic disposition, narrow therapeutic index, and rapid uptake by normal tissues are also a few challenges. To overcome these issues, it is important to choose plant-based drugs in nano-formulations to inhibit tumor cell growth without harming the normal cells of an individual. The biggest challenge in treating tumors is multidrug resistance, which can be overcome by choosing combination therapies of drugs based on phytochemicals and chemotherapeutic agents, which may lead to minimized adverse effects on patients with brain tumors. Findings: As the use of nano-technology for targeted delivery enhances the performance of chemotherapeutic agents, the drugs with poor characteristics can further be encapsulated in nano-carriers and easily delivered to the poorly accessible areas of the brain.\n\n\n\nBased on the current progression in nanoformulations, so many new therapeutic approaches are available to provide better therapeutic results. However, there seems to be a multitude of issues that need to be addressed in order to ensure efficient results in treating cancer and thus lessening the fatality rate.\n","PeriodicalId":38913,"journal":{"name":"Nanoscience and Nanotechnology - Asia","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phytochemical-based Nanoformulations for Drug-resistant Brain Cancer\",\"authors\":\"S. Bhatt, N. Saini, Manish Kumar\",\"doi\":\"10.2174/2210681213666230609152755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nBrain tumor is the deadliest to treat with conventional drug therapy as it has various side effects on patients leading to organ failure.\\n\\n\\n\\nIt is difficult to treat brain cancers or deliver drugs to the targeted organ due to the numerous challenges faced. The current cytotoxic drugs have serious side effects, such as causing extreme damage to healthy cells, anemia associated with bone marrow suppression, constipation, small intestine infection, inflammatory responses, immunodeficiency, and multiorgan toxic effects. Low solubility, poor cell penetration, hepatic disposition, narrow therapeutic index, and rapid uptake by normal tissues are also a few challenges. To overcome these issues, it is important to choose plant-based drugs in nano-formulations to inhibit tumor cell growth without harming the normal cells of an individual. The biggest challenge in treating tumors is multidrug resistance, which can be overcome by choosing combination therapies of drugs based on phytochemicals and chemotherapeutic agents, which may lead to minimized adverse effects on patients with brain tumors. Findings: As the use of nano-technology for targeted delivery enhances the performance of chemotherapeutic agents, the drugs with poor characteristics can further be encapsulated in nano-carriers and easily delivered to the poorly accessible areas of the brain.\\n\\n\\n\\nBased on the current progression in nanoformulations, so many new therapeutic approaches are available to provide better therapeutic results. However, there seems to be a multitude of issues that need to be addressed in order to ensure efficient results in treating cancer and thus lessening the fatality rate.\\n\",\"PeriodicalId\":38913,\"journal\":{\"name\":\"Nanoscience and Nanotechnology - Asia\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscience and Nanotechnology - Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2210681213666230609152755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscience and Nanotechnology - Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2210681213666230609152755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Phytochemical-based Nanoformulations for Drug-resistant Brain Cancer
Brain tumor is the deadliest to treat with conventional drug therapy as it has various side effects on patients leading to organ failure.
It is difficult to treat brain cancers or deliver drugs to the targeted organ due to the numerous challenges faced. The current cytotoxic drugs have serious side effects, such as causing extreme damage to healthy cells, anemia associated with bone marrow suppression, constipation, small intestine infection, inflammatory responses, immunodeficiency, and multiorgan toxic effects. Low solubility, poor cell penetration, hepatic disposition, narrow therapeutic index, and rapid uptake by normal tissues are also a few challenges. To overcome these issues, it is important to choose plant-based drugs in nano-formulations to inhibit tumor cell growth without harming the normal cells of an individual. The biggest challenge in treating tumors is multidrug resistance, which can be overcome by choosing combination therapies of drugs based on phytochemicals and chemotherapeutic agents, which may lead to minimized adverse effects on patients with brain tumors. Findings: As the use of nano-technology for targeted delivery enhances the performance of chemotherapeutic agents, the drugs with poor characteristics can further be encapsulated in nano-carriers and easily delivered to the poorly accessible areas of the brain.
Based on the current progression in nanoformulations, so many new therapeutic approaches are available to provide better therapeutic results. However, there seems to be a multitude of issues that need to be addressed in order to ensure efficient results in treating cancer and thus lessening the fatality rate.
期刊介绍:
Nanoscience & Nanotechnology-Asia publishes expert reviews, original research articles, letters and guest edited issues on all the most recent advances in nanoscience and nanotechnology with an emphasis on research in Asia and Japan. All aspects of the field are represented including chemistry, physics, materials science, biology and engineering mainly covering the following; synthesis, characterization, assembly, theory, and simulation of nanostructures (nanomaterials and assemblies, nanodevices, nano-bubbles, nano-droplets, nanofluidics, and self-assembled structures), nanofabrication, nanobiotechnology, nanomedicine and methods and tools for nanoscience and nanotechnology.