LPG传感用In掺杂ZnO薄膜的合成与表征

R. K. Kolhe, K. Kulkarni, K. Sonawane, M. More, S. Gosavi
{"title":"LPG传感用In掺杂ZnO薄膜的合成与表征","authors":"R. K. Kolhe, K. Kulkarni, K. Sonawane, M. More, S. Gosavi","doi":"10.1109/ISPTS.2012.6260965","DOIUrl":null,"url":null,"abstract":"Thin films of indium doped zinc oxide (In:ZnO) have been deposited onto glass substrates using a facile and inexpensive Spray Pyrolysis method. To reveal the effect of indium concentration on the gas sensing characteristics, thin films were synthesized using different concentration of indium in the precursor. X-ray diffraction (XRD) study indicates formation of crystalline phase of zinc oxide under the prevailing experimental conditions. The scanning electron microscope (SEM) images reveal uniform deposition on the entire substrate surface characterized by granular morphology. A careful observation of the SEM images reveals that nanocrystalline nature of the films, with average grain size ∼ 300 nm. The elemental composition obtained from the Energy Dispersive X-ray Analysis (EDAX) confirms presence of indium along with zinc and oxygen in the synthesized thin films. The gas sensing characteristics of the In-ZnO2 films were investigated for Liquefied Petroleum Gas (LPG) vapours at different operating temperatures in the range of 200 to 320 °C and various vapour concentration values. Interestingly, the In-ZnO thin films exhibited good sensor response in the operating temperature range. The response and recovery times are also in the range of few tens of second. The present results indicate that spray synthesized In-ZnO films have potential towards detection of LPG vapours","PeriodicalId":6431,"journal":{"name":"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Synthesis and characterization of In doped ZnO thin films for LPG sensing\",\"authors\":\"R. K. Kolhe, K. Kulkarni, K. Sonawane, M. More, S. Gosavi\",\"doi\":\"10.1109/ISPTS.2012.6260965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thin films of indium doped zinc oxide (In:ZnO) have been deposited onto glass substrates using a facile and inexpensive Spray Pyrolysis method. To reveal the effect of indium concentration on the gas sensing characteristics, thin films were synthesized using different concentration of indium in the precursor. X-ray diffraction (XRD) study indicates formation of crystalline phase of zinc oxide under the prevailing experimental conditions. The scanning electron microscope (SEM) images reveal uniform deposition on the entire substrate surface characterized by granular morphology. A careful observation of the SEM images reveals that nanocrystalline nature of the films, with average grain size ∼ 300 nm. The elemental composition obtained from the Energy Dispersive X-ray Analysis (EDAX) confirms presence of indium along with zinc and oxygen in the synthesized thin films. The gas sensing characteristics of the In-ZnO2 films were investigated for Liquefied Petroleum Gas (LPG) vapours at different operating temperatures in the range of 200 to 320 °C and various vapour concentration values. Interestingly, the In-ZnO thin films exhibited good sensor response in the operating temperature range. The response and recovery times are also in the range of few tens of second. The present results indicate that spray synthesized In-ZnO films have potential towards detection of LPG vapours\",\"PeriodicalId\":6431,\"journal\":{\"name\":\"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPTS.2012.6260965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPTS.2012.6260965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

采用喷雾热解的方法在玻璃衬底上制备了铟掺杂氧化锌(In:ZnO)薄膜。为了揭示铟浓度对气敏特性的影响,在前驱体中加入不同浓度的铟,合成了薄膜。x射线衍射(XRD)研究表明,在现行的实验条件下,氧化锌形成了结晶相。扫描电子显微镜(SEM)图像显示整个衬底表面均匀沉积,具有颗粒状形貌。对扫描电镜图像的仔细观察表明,薄膜具有纳米晶的性质,平均晶粒尺寸为~ 300 nm。从能量色散x射线分析(EDAX)中获得的元素组成证实,在合成的薄膜中存在铟、锌和氧。研究了in - zno2薄膜在200 ~ 320℃不同工作温度和不同蒸气浓度下对液化石油气(LPG)蒸气的气敏特性。有趣的是,in - zno薄膜在工作温度范围内表现出良好的传感器响应。响应和恢复时间也在几十秒的范围内。本研究结果表明,喷雾合成的In-ZnO薄膜具有检测LPG蒸气的潜力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis and characterization of In doped ZnO thin films for LPG sensing
Thin films of indium doped zinc oxide (In:ZnO) have been deposited onto glass substrates using a facile and inexpensive Spray Pyrolysis method. To reveal the effect of indium concentration on the gas sensing characteristics, thin films were synthesized using different concentration of indium in the precursor. X-ray diffraction (XRD) study indicates formation of crystalline phase of zinc oxide under the prevailing experimental conditions. The scanning electron microscope (SEM) images reveal uniform deposition on the entire substrate surface characterized by granular morphology. A careful observation of the SEM images reveals that nanocrystalline nature of the films, with average grain size ∼ 300 nm. The elemental composition obtained from the Energy Dispersive X-ray Analysis (EDAX) confirms presence of indium along with zinc and oxygen in the synthesized thin films. The gas sensing characteristics of the In-ZnO2 films were investigated for Liquefied Petroleum Gas (LPG) vapours at different operating temperatures in the range of 200 to 320 °C and various vapour concentration values. Interestingly, the In-ZnO thin films exhibited good sensor response in the operating temperature range. The response and recovery times are also in the range of few tens of second. The present results indicate that spray synthesized In-ZnO films have potential towards detection of LPG vapours
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gas sensing properties of the fluorine-doped tin oxide thin films Prepared by advanced spray pyrolysis Tailoring of optical band gap, morphology and surface wettability of bath deposited nanocrystalline ZnxCd(1−x)S thin films with incorporation of Zn for solar cell application Comparison of micro fabricated C and S bend shape SU-8 polymer waveguide of different bending diameters for maximum sensitivity A theoretical approach to study the temperature dependent performance of a SiC MESFET in sensor application. Effect of RE3+ (RE = Eu, Sm) ion doping on dielectric properties of nano-wollastonite synthesized by combustion method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1