商图像:不同光照条件下基于类的识别与合成

Tammy Riklin-Raviv, A. Shashua
{"title":"商图像:不同光照条件下基于类的识别与合成","authors":"Tammy Riklin-Raviv, A. Shashua","doi":"10.1109/CVPR.1999.784968","DOIUrl":null,"url":null,"abstract":"The paper addresses the problem of \"class-based\" recognition and image-synthesis with varying illumination. The class-based synthesis and recognition tasks are defined as follows: given a single input image of an object, and a sample of images with varying illumination conditions of other objects of the same general class, capture the equivalence relationship (by generation of new images or by invariants) among all images of the object corresponding to new illumination conditions. The key result in our approach is based on a definition of an illumination invariant signature image, we call the \"quotient\" image, which enables an analytic generation of the image space with varying illumination from a single input image and a very small sample of other objects of the class-in our experiments as few as two objects. In many cases the recognition results outperform by far conventional methods and the image-synthesis is of remarkable quality considering the size of the database of example images and the mild pre-process required for making the algorithm work.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"1 1","pages":"566-571 Vol. 2"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":"{\"title\":\"The quotient image: Class based recognition and synthesis under varying illumination conditions\",\"authors\":\"Tammy Riklin-Raviv, A. Shashua\",\"doi\":\"10.1109/CVPR.1999.784968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper addresses the problem of \\\"class-based\\\" recognition and image-synthesis with varying illumination. The class-based synthesis and recognition tasks are defined as follows: given a single input image of an object, and a sample of images with varying illumination conditions of other objects of the same general class, capture the equivalence relationship (by generation of new images or by invariants) among all images of the object corresponding to new illumination conditions. The key result in our approach is based on a definition of an illumination invariant signature image, we call the \\\"quotient\\\" image, which enables an analytic generation of the image space with varying illumination from a single input image and a very small sample of other objects of the class-in our experiments as few as two objects. In many cases the recognition results outperform by far conventional methods and the image-synthesis is of remarkable quality considering the size of the database of example images and the mild pre-process required for making the algorithm work.\",\"PeriodicalId\":20644,\"journal\":{\"name\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"volume\":\"1 1\",\"pages\":\"566-571 Vol. 2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"83\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1999.784968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.784968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 83

摘要

本文解决了“基于类别”的识别和不同光照下的图像合成问题。基于类的合成和识别任务定义如下:给定一个对象的单一输入图像,以及具有不同照明条件的同一一般类别的其他对象的图像样本,捕获与新照明条件相对应的该对象的所有图像之间的等价关系(通过生成新图像或通过不变量)。我们方法的关键结果是基于照明不变签名图像的定义,我们称之为“商”图像,它可以从单个输入图像和非常小的同类其他对象样本中分析生成具有不同照明的图像空间-在我们的实验中只有两个对象。在许多情况下,识别结果远远优于传统方法,并且考虑到示例图像数据库的大小和使算法工作所需的温和预处理,图像合成的质量非常高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The quotient image: Class based recognition and synthesis under varying illumination conditions
The paper addresses the problem of "class-based" recognition and image-synthesis with varying illumination. The class-based synthesis and recognition tasks are defined as follows: given a single input image of an object, and a sample of images with varying illumination conditions of other objects of the same general class, capture the equivalence relationship (by generation of new images or by invariants) among all images of the object corresponding to new illumination conditions. The key result in our approach is based on a definition of an illumination invariant signature image, we call the "quotient" image, which enables an analytic generation of the image space with varying illumination from a single input image and a very small sample of other objects of the class-in our experiments as few as two objects. In many cases the recognition results outperform by far conventional methods and the image-synthesis is of remarkable quality considering the size of the database of example images and the mild pre-process required for making the algorithm work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual signature verification using affine arc-length A novel Bayesian method for fitting parametric and non-parametric models to noisy data Material classification for 3D objects in aerial hyperspectral images Deformable template and distribution mixture-based data modeling for the endocardial contour tracking in an echographic sequence Applying perceptual grouping to content-based image retrieval: building images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1