{"title":"不同水分条件下山毛榉木屑刀铣削比能需要量的实验研究","authors":"T. Jirout, L. Krátký","doi":"10.3303/CET2187089","DOIUrl":null,"url":null,"abstract":"The paper scoped to identify specific energy demand of knife milled beech chips in dependence on moisture, initial and final particle size. The experiments were conducted for beech chips of moisture being 0.5, 7.5 and 16 % wt. dry mass, under mechanical size reduction in the knife mill with the fixed rotational speed of single blade rotor. The specific energy demand of 8.1 - 55.6 kWh t-1 was determined to reach final particle size 0.3 - 1.0 mm from initial 3.4, all as D50 value for given moistures. Regarding the brittle behaviour of beech chips, the Rittinger theory was applied, and the empiric model was defined to predict the energy requirement of size reduction relation to moisture and biomass particle size.","PeriodicalId":9695,"journal":{"name":"Chemical engineering transactions","volume":"111 1","pages":"529-534"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Identification of Specific Energy Demand for Knife Milling of Beech Chips at Different Moistures\",\"authors\":\"T. Jirout, L. Krátký\",\"doi\":\"10.3303/CET2187089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper scoped to identify specific energy demand of knife milled beech chips in dependence on moisture, initial and final particle size. The experiments were conducted for beech chips of moisture being 0.5, 7.5 and 16 % wt. dry mass, under mechanical size reduction in the knife mill with the fixed rotational speed of single blade rotor. The specific energy demand of 8.1 - 55.6 kWh t-1 was determined to reach final particle size 0.3 - 1.0 mm from initial 3.4, all as D50 value for given moistures. Regarding the brittle behaviour of beech chips, the Rittinger theory was applied, and the empiric model was defined to predict the energy requirement of size reduction relation to moisture and biomass particle size.\",\"PeriodicalId\":9695,\"journal\":{\"name\":\"Chemical engineering transactions\",\"volume\":\"111 1\",\"pages\":\"529-534\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical engineering transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3303/CET2187089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical engineering transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3303/CET2187089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
Experimental Identification of Specific Energy Demand for Knife Milling of Beech Chips at Different Moistures
The paper scoped to identify specific energy demand of knife milled beech chips in dependence on moisture, initial and final particle size. The experiments were conducted for beech chips of moisture being 0.5, 7.5 and 16 % wt. dry mass, under mechanical size reduction in the knife mill with the fixed rotational speed of single blade rotor. The specific energy demand of 8.1 - 55.6 kWh t-1 was determined to reach final particle size 0.3 - 1.0 mm from initial 3.4, all as D50 value for given moistures. Regarding the brittle behaviour of beech chips, the Rittinger theory was applied, and the empiric model was defined to predict the energy requirement of size reduction relation to moisture and biomass particle size.
期刊介绍:
Chemical Engineering Transactions (CET) aims to be a leading international journal for publication of original research and review articles in chemical, process, and environmental engineering. CET begin in 2002 as a vehicle for publication of high-quality papers in chemical engineering, connected with leading international conferences. In 2014, CET opened a new era as an internationally-recognised journal. Articles containing original research results, covering any aspect from molecular phenomena through to industrial case studies and design, with a strong influence of chemical engineering methodologies and ethos are particularly welcome. We encourage state-of-the-art contributions relating to the future of industrial processing, sustainable design, as well as transdisciplinary research that goes beyond the conventional bounds of chemical engineering. Short reviews on hot topics, emerging technologies, and other areas of high interest should highlight unsolved challenges and provide clear directions for future research. The journal publishes periodically with approximately 6 volumes per year. Core topic areas: -Batch processing- Biotechnology- Circular economy and integration- Environmental engineering- Fluid flow and fluid mechanics- Green materials and processing- Heat and mass transfer- Innovation engineering- Life cycle analysis and optimisation- Modelling and simulation- Operations and supply chain management- Particle technology- Process dynamics, flexibility, and control- Process integration and design- Process intensification and optimisation- Process safety- Product development- Reaction engineering- Renewable energy- Separation processes- Smart industry, city, and agriculture- Sustainability- Systems engineering- Thermodynamic- Waste minimisation, processing and management- Water and wastewater engineering